

AFRL-IF-RS-TR-2005-269
Final Technical Report
July 2005

EAGLE HATS MINI-TECHNOLOGY
INTEGRATION EXPERIMENT (TIE)

University of Massachusetts at Amherst

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2005-269 has been reviewed and is approved for publication

APPROVED: /s/

WILLIAM E. RZEPKA
Project Engineer

 FOR THE DIRECTOR: /s/

JOSEPH CAMERA, Chief
 Information & Intelligence Exploitation Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
JULY 2005

3. REPORT TYPE AND DATES COVERED
Final Sep 01 – Nov 04

4. TITLE AND SUBTITLE
EAGLE HATS MINI-TECHNOLOGY INTEGRATION EXPERIMENT (TIE)

6. AUTHOR(S)
Paul R. Cohen

5. FUNDING NUMBERS
C - F30602-01-2-0580
PE - 31011G
PR - EELD
TA - 01
WU - 07

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Massachusetts
Experimental Knowledge Systems Laboratory
Computer Science Department
Amherst Massachusetts 01003

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/IFED
525 Brooks Road
Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2005-269

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: William E. Rzepka/IFED/(315) 330-2762/ William.Rzepka@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
Hats is a virtual world in which agents (called hats) move around, go to meetings, acquire capabilities, do business, and,
for a small subpopulation of agents, do harm. Agents move on a two-dimensional board that has only two kinds of
locations: Beacons are high-value places that terrorist agents would like to destroy, other locations have low value. All
beacons have a set of attributes, or vulnerabilities, corresponding to the capabilities agents carry. To destroy a beacon,
a terrorist task force must be in possession of a set of capabilities that match a beacon’s vulnerabilities, as a key
matches a lock. In general, these sets of capabilities are not unique to terrorists, so one cannot identify a terrorist task
force from its constituent capabilities alone. Hats serves as an unclassified proxy for real Intelligence analysis.

15. NUMBER OF PAGES
50

14. SUBJECT TERMS
Simulator, Bayesian Blackboard, Group Finding Algorithm

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Table of Contents

Executive Summary ..1

The Hats Simulator and the Information Broker ...1

The Hats mini-TIE……………… ...2

Community Mechanics ...2

Data Export ...2

Bayesian Blackboard ..2

Algorithms and experiments ...2

Scaling the Blackboard ..3

Working Together on the Manual Blackboard ..4

Suspicion Scoring ..4

Group Finding………………..5

Pattern Finding ..6

Algorithms ..6

Suspicion Scoring: The Perjury Model ...6

Group Finding ...7

Summary ...7

References ...8

Appendix A: A Knowledge Acquisition Tool for Course of Action............................10
Appendix B: The Hats Simulator..18
Appendix C: An Unsupervised Algorithm for Segmenting Categorical Timeseries....26
Appendix D: Simulating Terrorist Threat in the Hats Simulator..................................41

 i

List of Figures

Figure 1: Bayesian Network ..3

 List of Tables

Table 1: Taskforce Count..4
Table 2: Dataset Properties……………… ...4
Table 3: KDL F-scores..5
Table 4: NYU F-scores ...5
Table 5: 21 st Century Pattern Finding Results ...6

ii

Executive Summary
The Experimental Knowledge Systems Laboratory (EKSL) at then University of
Massachusetts, Amherst supported the Hats mini-TIE of the AFRL EAGLE project. The
goal of the mini-TIE was to develop and publicize Hats as a strong and unclassified
contender for research into algorithms, tools and techniques for intelligence analysis. Our
chief accomplishments were:

• Made the Hats simulator faster, more extensible and more robust,
• Published Hats data in EAGLE Database (EDB) format (both the old format and

the new), in Comma Separated Value (CSV) format and in “Lispy” format,
• Continued to develop the Bayesian Blackboard,
• Ran comparison experiments of algorithms from NYU, 21st Century, ISI, KDL

and CMU. These verified that a Blackboard Architecture could indeed combine
typical intelligence algorithms1 and perform better that the algorithms did on their
own,

• Maintained the Hats community via an online web site, a Wiki and mailing lists,
• Developed algorithms for population generation and suspicion scoring,
• Analyzed a guilt by association model.

The Hats simulator and Information Broker have proven to be excellent tools for
experimenting with algorithms and analysis techniques.

The Hats Simulator and the Information Broker
Hats is a virtual world in which agents (called hats) move around, go to meetings, acquire
capabilities, do business, and, for a small subpopulation of agents, do harm. Agents move
on a two-dimensional board that has only two kinds of locations: Beacons are high-value
places that terrorist agents would like to destroy, other locations have low value. All
beacons have a set of attributes, or vulnerabilities, corresponding to the capabilities
agents carry. To destroy a beacon, a terrorist task force must be in possession of a set of
capabilities that match a beacon’s vulnerabilities, as a key matches a lock. In general,
these sets of capabilities are not unique to terrorists, so one cannot identify a terrorist task
force from its constituent capabilities alone. Hats serves as an unclassified proxy for real
Intelligence analysis. For more information, see [2].

The Information Broker provides a buffer between the data produced by Hats and
intelligence analysts. Like the real world, information can be retrieved from this buffer
only by paying for it and the quality of the information improves as more is paid. The
Information Broker provides Hats with a model of utility: how much should we pay for
information in order to prevent an attack?

In this effort, we have extended Hats and the Information Broker by dramatically
increasing simulation speed to the point were we can generate populations of hundreds of
thousands of agents in minutes and run a world of 100,000-agents for 2000-ticks in less

1 Typical algorithms are group finders like K-Groups or KOJAK and suspicion scorers
like NYU’s relational classifier or ISI GBA.

1

than 5 hours2. If a tick represents a day then we can quickly simulate years of terrorist
activity. In addition, we have improved the architecture of Hats and the Information
Broker so that it is easier to include new adversarial planners, population generators and
world models. Finally, we have worked to make the Hats code base more portable to
other Lisp dialects such as OpenMCL, LispWorks, Franz Lisp, and SBCL.

The Hats mini-TIE

Community Mechanics
We have provided a Hats web site (at eksl.cs.umass.edu/hats/) and a collaborative web
site (at eksl.cs.umass.edu/hats/cliki/)3. These have been used to introduce the Hats
simulator and to facilitate discussion on the data sets we have produced.

Data Export
Significant effort was required to develop data export routines to support the original
EDB schema because of its convoluted nature. We translated the Hats ontology into that
of the EDB schema and developed Lisp/SQL routines to perform the conversion. Because
this work proceeded more slowly than planned, we also developed simple CSV and Lispy
export routines so that the Hats mini-TIE community could see our data quickly.

Shortly after we had completed the original EDB export routines, EAGLE instituted a
major change in the EDB schema. It was difficult to fit the Hats ontology into the new
schema but we persevered and developed new data export routines. In the process, we
added the ability to produce data with customizable noise (this included additional
records, changed records and missing records). Several data sets were produced and used
in the

Bayesian Blackboard
EKSL has continued to develop the Bayesian Blackboard. This technology aims to
combine rational Bayesian statistical techniques with dynamic Blackboard based
execution control in order to achieve fluid mixed initiative analysis of incoming
intelligence data. During the EAGLE project, EKSL first prototyped a proof of concept
system and used it to analyze data from the Capture the Flag war-gaming system and the
Hats simulator. Lessons from the initial version were then fed back into a second system
which is still under development [15].

Algorithms and Experiments
In order to validate our Bayesian Blackboard design, we used Hat simulator data to run
two experiments. Both provided additional proofs of the Bayesian Blackboard concept:

2 Speed results are based on using Macintosh Common Lisp 5.0 running under OS X 10.3
on a 1.25-Mhz G4 Powerbook.
3 The collaborative web site is set up as a “wiki”, the generic term for an open, generally
free form web authoring system. See http://www.c2.com/cgi/wiki?WelcomeVisitors for
more details.

2

the first examined scalability within the Blackboard; the second let us work closely with
our partners to produce a “manual” Blackboard.

SCALING THE BLACKBOARD
Like all Blackboards, the Bayesian Blackboard contains data about the domain – in this
case Hats – and control information [14, 11]. In particular, the Blackboard database
contains primary and secondary data about the entities in the Hats simulator and Bayesian
Fragments representing facts and inferences about those entities. Control is achieved via
fragment combination and graph matching, Bayesian statistical inference, the creation
and obviation of hypothesis, call outs to external algorithms (to provide additional,
perhaps non-Bayesian analysis) and human input. Our Bayesian fragments closely follow
the work of Kathleen Lansky [9, 10] in that they closely represent first order logical
expressions. For example, we start with statements like:

• Taskforce TF is about to attack beacon B
• Taskforce TF is malicious
• Taskforce TF is close to beacon B (within striking distance)

And convert them into Bayesian fragments. These fragments are then combined to
produce networks such as that in Figure 1.

Figure 1: Bayesian network representing the probability of imminent-attack of

beacon-Q by taskforce Alpha, based on information from hat-1

All logical formalisms suffer from the combinatorial curse when applied to real world
problems and Blackboard systems are no exception. For example, looking for task forces
is a dreadful proposition in even a very small hats world with 1000 benign hats and 100
terrorists (half known, half covert). Suppose we knew that all task forces consist of
exactly four members, we can ask how many nodes we would need to post on the
Blackboard in order to find threatening groups. Table 1 provides a summary of the
answer starting with the naïve estimate of 1100 hats choose 4. It then goes on to show
how information from the Blackboard knowledge sources can greatly reduce the total
number of task forces that must be examined. Clearly, Blackboard control is essential to
making even simple problem tractable.

3

Scenario Taskforce Count Reduction
1100 hats choose 4 60,671,970,975 N/A
65 high suspicion hats choose 4 (via
NYU) 677,040 89,000
66 terrorist organization hats (via
KOJAK group finder) 720,720 84,000
Each of 3 groups has 36 members 176,715 3.9
Suspicious taskforces (average score ≥
0.7)

152,901 1.1
Suspicious taskforces with no more
than two known terrorists 96,768 1.6
Suspicion taskforces with no known
terrorists 1591 60.8
Table 1: Taskforce Count for small Hat world under various conditions

WORKING TOGETHER ON THE MANUAL BLACKBOARD
In the manual Blackboard experiment, CMU and ISI/USC provided group finding
algorithms; NYU and the KDL group at the University of Massachusetts suspicion
scorers and the University of Texas at Austin and 21st Century provided pattern analysis.
In the experiment, we produced Hats data from the simulator and passed it along to each
group for analysis. We then shared the analysis results amongst the groups so that they
could use this additional information for further analysis. Our hypothesis was that we
would find improved results when groups were allowed to share information. If this
simple manual Blackboard failed to show that algorithms can improve one another’s
results, there would be little point in building more elaborate systems.

We provided snapshots of data from the Hats simulator taken just before a beacon was
attacked (at ticks 673, 1263 and 1767). Our goal was to see how well the various
algorithms performed with additional data and whether or not the algorithms could help
one another. Table 2 depicts the data characteristics:

TICKS
672 1262 1766

Nodes 1100 1100 1100
Links 3918 7248 10,071
Average degree 7.1 13.2 18.3
Clustering Coefficient 0.44 0.31 0.27

Table 2: Dataset properties.

Suspicion Scoring
The KDL Group at the University of Massachusetts, Amherst and Sofus Macskassy at
NYU examined the data with their suspicion scoring algorithms. Their analyzed the data

4

both with and without group information from CMU GDA group detector. The results are
shown in tables 3 and 4.

 Benign Recall Terrorist Recall Overall Accuracy AUC

0-672
 1.00 0.91 0.99 0.98
 with Groups 1.00 0.91 0.99 0.98

0-1262
 1.00 0.91 0.99 0.96
 with Groups 1.00 0.96 0.99 0.99

0-1766
 0.99 0.91 0.98 0.99
 with Groups 0.98 0.93 0.98 0.98

Table 3: KDL F-scores with and without group data

 AUC
0-672
 0.92
 with Groups 0.86
0-1262
 0.95
 with Groups 0.80
0-1766
 0.96
 with Groups 0.80

Table 4: NYU F-scores with and without group data
KDL found that the group information improved accuracy somewhat without disturbing
recall. On the other hand, NYU saw a drop in overall AUC. Both algorithms performed
exceptionally well on the sample datasets which indicates that we may be seeing a ceiling
effect. More study is needed using more difficult datasets in order to tease out what we
are actually seeing.

Group Finding
We using ISI KOJAK Group finder both with and without suspicion score information
from NYU and KDL. We used the suspicion scores in several different ways:

• As a pre-processing filter: drop hats from the list if the suspicion scorer classifies
it as a “good guy” with high probability.

• As a post-processing filter: remove good guys before looking for groups
• As a seeding technique: use highly suspicious hats as seed members for groups

5

All of these methods show a 2-3% improvement over and above KOJAK’s already high
performance. Once again, further analysis is needed to understand what we are seeing in
part because of ceiling effects.

Another possible problem is that Hats data is intentionally simple: there just is not that
much for these algorithms to use. It may be that each technique is essentially “using up”
all of the available information in the data. We are still in the process of attempting to
quantify this idea so that it can be analyzed.

Pattern Finding
Lastly, 21st Century analyzed Hats data with their pattern finding algorithms. They only
looked at the smallest data set (from ticks 0 through 672) and searched for a pattern of
groups whose member-capabilities cover all of the capabilities associated with a
particular beacon (recall that these are the groups that can potentially destroy the beacon).
Out of 33 beacons, they found 7 pattern beacons with matching patterns. There were 19
final meetings at these 7 beacons (as compared to 84 final meetings for all 33 beacons).
Table 5 shows the results of comparing the threat groups found by 21st Century to all of
the task forces assigned to beacons.

Precision Recall Hit count False
positives

Miss count

0.87 1.0 10.86 1.57 0.0

Table 5: 21st Century pattern finding results
The advantage here is that we have actually used both capability and link information to
find task forces which may allow for a much stronger focus. On the negative side, the
patterns found both terrorist and benign task forces, missed 26 out of 33 beacons and did
not make use of temporal data such as capability trading.

We still need to explore combining suspicion scoring and group finding with the pattern
finding technology.

Algorithms
In the process of incorporating and analyzing outside algorithms, we also developed our
own suspicion scoring and group finding techniques.

SUSPICION SCORING: THE PERJURY MODEL
From the beginning, Hats has included a simple perjury model that taints individuals
based on how often they meet other tainted individuals [7]. In particular, we set the
perjury p of a Hat h at time t to:

ph(t) = ph(t-1) – β ph(t-1)+α(1- ph(t-1))z

Where α and β are parameters that set how quickly perjury rises and falls. The function z
is based on the scores of hats in contact with h at time t-1. This formulation keeps the
perjury score of each hat within the interval [0, 1]. We analyzed this guilt-by-association
model and found both empirically and analytically that it is very sensitive to changes in

6

its α and β parameters: that tiny changes in them would produce radically different policy
implementations – clearly an undesirable outcome. This is a simple guilt-by-association
model and our results do not imply that such models have this problem. What we do
show, however, is that analyzing the perturbation sensitivity of models is vitally
important.

GROUP FINDING:
We also developed a novel method of finding groups of related individuals in a larger
population based on the differing dynamics of classification in members and non-
members. Despite its simplicity, this algorithm performed very well on data from the
Hats simulator [6]. The essential insight of the algorithm is that the connectivity of group
members is different from that of non-group members. If we view suspicion as a disease,
then this differing connectivity translates into different epidemic dynamics for members
and non-members. Surprisingly, this difference is enough to do as well as many other
group finding algorithms.

Summary
In conclusion, the Hats simulator and its Information Broker have proven to be excellent
tools for experimenting with algorithms and analysis techniques. The data produced can
be placed on the Bayesian Blackboard and analyzed with multiple tools from multiple
research groups. Hats data will provide researchers with fodder for many questions for
much time to come.

7

References

[1] BARKER, K., BLYTHE, J., BORCHARDT, G., CHAUDHRI, V. K., CLARK, P. E.,
COHEN, P., FITZGERALD, J., FORBUS, K., GIL, Y., KATZ, B., KIM, J., KING, G.,
MISHRA, S., MURRAY, K., OTSTOTT, C., PORTER, B., SCHRAG, R. C., URIBE, T.,
USHER, J., AND YEH, P. Z. A knowledge acquisition tool for course of action
analysis.

[2] COHEN, P., AND MORRISON, C. The hats simulator. In Proceedings of the Winter
Simulation Conference (2004).

[3] COHEN, P. R., HEERINGA, B., AND ADAMS, N. An unsupervised algorithm for
segmenting categorical time series into episodes. In Working Notes on Pattern
Detection and Discovery in Data Mining (2002).

[4] COHEN, P. R., HEERINGA, B., AND ADAMS, N. An unsupervised algorithm for
segmenting categorical time series into episodes. In Proceedings of the IEEE
International Conference on Data Mining (2002).

[5] COHEN, P. R., AND MORRISON, C. T. The hats simulator. In Proceedings of the
2004 Winter Simulation Conference (2004), R. G. Ingalls, M. D. Rosetti, J. S.
Smith, and B. A. Peters, Eds.

[6] GALSTYAN, A., AND COHEN, P. Identifying covert sub-networks through
iterative node classi_cation. In Proceedings of the First International
Conference on Intelligence Analysis (2005).

[7] GALSTYAN, A., AND COHEN, P. Is guilt by association a bad thing? In
Proceedings of the First International Conference on Intelligence Analysis
(2005).

[8] HANNON, A. C., KING, G., MORRISON, C., GALSTYAN, A., AND COHEN, P.
Population generation for large-scale simulation. In Proceedings of AeroSense
2005 (2005).

[9] LASKEY, K. B. Knowledge representation and model construction, 2000.
[10] LASKEY, K. B., AND MAHONEY, S. M. Network fragments: Representing

knowledge for constructing probabilistic models. Morgan Kaufmann Publishers.
[11] LESSER, V., WHITEHAIR, R. C., CORKILL, D. D., AND HERNANDEZ., J. A. Goal

relationships and their use in a blackboard architecture. In Blackboard
Architectures and Applications (1989), V. Jagannathan, R. Dodhiawala, and
L. S. Baum, Eds., Academic Press, pp. 9–26.

[12] MORRISON, C. T., AND COHEN, P. R. The value of noisy information. In
Proceedings of The Sixth International Symposium on Intelligent Data Analysis
(IDA-2005) (2005).

[13] MORRISON, C. T., COHEN, P. R., KING, G. W., MOODY, J., AND HANNON, A.
Simulating terrorist threat in the hats simulator. In Proceedings of the First
International Conference on Intelligence Analysis (2005).

8

[14] NII, H. P. Blackboard systems. In The Handbook of Artificial Intelligence:
Volume IV (1989), P. R. C. Avron Barr and E. A. Feigenbaum, Eds., Addison-
Wesley, pp. 1–82.

[15] SUTTON, C., BURNS, B., MORRISON, C. T., AND COHEN, P. R. Guided
incremental construction of belief networks. In Fifth International Symposium
on Intelligent Data Analysis (2003).

9

A Knowledge Acquisition Tool for Course of Action Analysis*

Ken Barker1, Jim Blythe2, Gary Borchardt3, Vinay K. Chaudhr i4, Peter E. Clark5, Paul Cohen6, Julie Fitzgerald9, Ken

Forbus7, Yolanda Gil 2, Bor is Katz3, Jihie K im2, Gary K ing6, Sunil M ishra4, Clayton Morr ison6, Ken Murr ay4, Char ley

Otstott 8, Bruce Por ter1, Robert C. Schrag9, Tomás Ur ibe4, Jeff Usher7, Peter Z. Yeh1

1. University of Texas at Austin 2. Information Sciences Institute at University of Southern California 3. Massachusetts Institute of
Technology 4. SRI International 5. The Boeing Company 6. University of Massachusetts at Amherst 7. Northwestern University

8. Retired Lieutenant General, U.S. Army 9. Information Extraction and Transport Corporation

* For more information about the SHAKEN system, contact Vinay Chaudhri at chaudhri@ai.sri.com
Copyright © 2003, American Association for Artificial Intell igence (www.aaai.org). All rights reserved.

Abstract
We present the novel application of a general-purpose
knowledge-based system, SHAKEN, to the specific task of
acquiring knowledge for milit ary Course of Action (COA)
analysis. We show how SHAKEN can capture and reuse
expert knowledge for COA critiquing, which can then be
used to produce high-level COA assessments through
declarative inference and simulation. The system has been
tested and evaluated by domain experts, and we report on the
results. The generality of the approach makes it applicable to
task analysis and knowledge capture in other domains. The
primary objective of this work is to demonstrate the
application of the knowledge acquisition technology to the
task of COA analysis. Developing a system deployable in an
operational environment is the subject of future work.

Introduction

The goal of the SHAKEN project is to let subject matter
experts (SMEs), unassisted by AI technologists, assemble
models of mechanisms and processes from components.
Questions about these models can be answered both by
conventional inference methods, such as theorem proving
and taxonomic inference, and by more task-specific
methods, such as simulation and analogical reasoning. We
believe that the assembly of components instantiated to a
domain is a natural way for SMEs to create knowledge
base content.

This paper describes the application of SHAKEN to the
acquisition and use of knowledge needed for milit ary
Course of Action (COA) analysis. We begin with a
technical overview of SHAKEN. We then describe the
COA application, and give an overview of its solution
using SHAKEN. For each aspect of the solution, we
describe the technical challenges faced, and how we
addressed them. We conclude with an evaluation of our
approach, and directions for future work.

Functional Design of SHAKEN
The SHAKEN system has the following functional units,
shown in Figure 1: a knowledge base (KB), an interface for
entering knowledge, a set of tools for verifying and using

knowledge, and a Web-based interaction manager. The
KB, also called the component library, or CLIB [3], is a
collection of components representing (a) general
knowledge about common physical objects and events,
states of existence, and core theories, including time, space,
and causality, and (b) more specialized knowledge about
particular domains, including micro-biology, chemistry,
milit ary units, milit ary equipment, and terrain.

By a component, we mean a coherent set of axioms that
describe some abstract phenomenon (e.g., the concept of
invade) and are packaged into a single representational
unit. Our claim is that a small number of predefined
components is suff icient to let SMEs assemble models of
virtually any mechanism or process. These components are
mostly domain independent, but their assembly and
specialization can create domain-specific representations.

The main task of the knowledge entry interface is to let
SMEs assemble the right KB components, by connecting
predefined elements of the component library. This is
performed through a graphical interface, where SMEs
assemble components by manipulating graphs. Axioms are
automatically derived from the graphical representation, so
the SMEs do not have to be trained in formal logic [8].

SHAKEN supports several different methods for using
knowledge. Declarative inference, performed using the
Knowledge Machine knowledge representation system
(KM) [7], is the most common approach for using
knowledge. Normative simulation is used to exercise the
process knowledge in the system [17]. It executes each step
in the process and analyzes interdependencies. Empirical
simulation exercises knowledge by running a detailed
simulation of a process using the Capture the Flag
simulation engine [1]. An analogical reasoner, based on the
Structure-Mapping engine [9], computes similarities and
differences given two concept representations [21]. These
methods can be invoked by a variety of means included in
the question-asking interface [6]. The answers to questions
are returned in an easily understood format, and the user
can control the level of detail i n an answer.

The interaction manager is aimed at making the
knowledge entry experience seem natural. It handles
limited forms of natural language input, and keeps track of

10

goodelle
Text Box
Appendix A:

the history of a knowledge acquisition session. A
knowledge analysis module and an analogy module support
the interaction manager and let SHAKEN take the initiative
in helping an SME enter knowledge [17]. For example, the
knowledge analysis module helps users verify and validate
their process descriptions by analyzing the results from
normative simulation. The vision for the interaction
manager is to make the knowledge entry similar to a
student/teacher interaction, where both the user and the
system take the initiative at different times [19].

Figure 1: SHAKEN functional architecture

The KB server provides faciliti es for eff icient storage
and access of knowledge, based on KM [7]. It stores both
domain-independent and domain-specific knowledge.

Knowledge verification based on normative simulation
is used during knowledge entry by SMEs. KB clustering
and diagnostics are used off -line both to support the
development of domain-independent knowledge, and to do
a post-hoc analysis of the knowledge entered by the SME.

Task: Course of Action Analysis

A milit ary COA is a plan outline used by a commander to
communicate to his subordinates one way to accomplish a
mission. Normally, commanders consider several different
ways to accomplish a mission, that is, several different
COAs. They evaluate competing COAs using appropriate
comparison criteria and decide on one to build into a
complete action plan for the mission. In this paper, we
consider COAs for ground milit ary forces conducting
offensive (attack) operations. The detail captured in the
COA depends on the echelon. We consider here COAs at
the level of a milit ary division, a brigade, or a batalli on.
We consider only the COAs of friendly forces. Possible
COAs for the enemy forces are not considered.

A COA specification is formulated in response to a
specific situation between opposing forces and a mission
directive. For purposes of description, we organize a COA

specification into two parts: problem statement and solution
statement. A COA problem statement consists of the
following: (1) a situation sketch (on a map), indicating
terrain features such as roads, rivers, lakes, hill s, forests,
and current Blue and Red unit placement; (2) a scenario
narrative, including any details not easily captured on the
map (e.g., relevant recent history, current dynamics,
expected future evolution, unit status descriptions); (3) a
mission specification, indicating specific forces under
command, required objectives, and constraints (e.g.,
“Capture Objective JAYHAWK by 1400 hours tomorrow
with the following restrictions in place…”); and (4) the
commander’s estimate of the situation.

Faced with such a problem statement, a commander
must formulate a plan for his forces to accomplish the
mission. He considers one or more options, or COAs. A
COA solution consists of: (1) a COA sketch—an overlay
on the problem statement’s situation sketch, and (2) a COA
narrative—a structured description stating the mission,
commander’s intent, desired end state, and the concept of
operations, including main attack, supporting attack, fire
support, and reserve. Each task in the COA must indicate
what units perform what actions for what purposes.

Given enough time to consider alternatives, the
commander’s staff evaluates the candidate COAs in a
subjective critiquing process, usually resulting in a matrix
comparing the viable ones, and presents the results to the
commander for a decision on the preferred COA.
Commonly used COA-critiquing criteria include mission
accomplishment, reserve availabilit y, speed, simplicity,
terrain use, risk, and position for follow-up operations.
With help from domain experts, we created an extensive
taxonomy of critiquing criteria. The COA critiquing task is
to evaluate a formally represented COA with respect to key
critiquing criteria. The purpose of critiquing and comparing
different COAs is to help the commander decide how best
to accomplish the assigned mission.

Given this definition of the COA analysis problem, the
tasks to be performed were twofold: (1) given textual and
graphical COA problem statements, formally represent
selected elements of these in a knowledge base, and (2)
author (conceive of and formally represent) knowledge to
support effective COA critiques, which can then be applied
to any formally represented COA solution statement.

We now briefly consider the possible deployment of a
COA critiquing system. The critiquing knowledge will be
entered in an Army laboratory long before the system is
actually used in the field. The COA problem and solution
statements will be entered at the time of actual usage of the
system. Thus, when the critiquing task is performed in
response to an actual need, the relevant critiquing
knowledge will already be available. Given that we were
developing an initial prototype, the task of entering COA
problem and solution statements, and the task of authoring
critiquing knowledge, are interleaved much more than they
might in a situation when a COA critiquing system has
been built and deployed.

11

Solution: Using SHAKEN to Acquire and
Apply COA Critiquing Knowledge

As stated in the previous section, the overall task has two
main aspects: COA authoring, and COA critiquing. With
reference to the functional architecture of Figure 1, the
tasks of authoring the COA and the critiquing knowledge
are supported by the knowledge entry subsystem. COA
authoring relies on battlespace knowledge that is built into
the knowledge base. The SME enters the critiquing
knowledge during development, which is stored in the
knowledge base. The module focused on using knowledge
supports the critiquing task. The interaction manager and
the knowledge verification module play a supporting role
in the overall solution of the problem.

COA Authoring
To formally author a COA, we needed to solve two
problems: (1) provide a vocabulary of terms that can be
used in COA authoring, and (2) provide a natural user
interface for commanders.

Vocabulary for COA authoring: To support COA
authoring, we need to represent military units, terrain, and
military tasks. For military tasks, we developed two
different representations: one suitable for declarative
inference, and the other suitable for empirical simulation.
Let us consider these two in more detail.

To develop representations for knowledge analysis, we
leveraged the domain-independent representations in the
component library to provide military-specific terms. For
example, consider the military task Canalize. This is a
tactical mission task where a military unit restricts enemy
movement to a narrow zone. We represented this domain-
specific action by specializing the domain-independent
action Confine. The Canalize task differs from Confine in
that its agent and object are military units, and its base is a
piece of narrow terrain. It is similar to Confine in that its
base plays the role of a container, and the object is inside
the base after the action has been performed.

Empirical simulation requires a model of the domain
and a model of the processes that occur in that domain. Our
domain model is built on the University of Massachusetts
Abstract Force Simulator (AFS) [2]. Military engagements
are represented using circular agents moving on a coarse
representation of real terrain. The agents have many
properties, but most of the ones significant to military
modeling (training, weapons type, troop strength,
experience, and so on) are agglomerated into a single
property: mass. The process model represents actions as
lists of desired effects on key properties. Figure 2 shows
the action model for Defeat, which is broken into two
phases: one for the friendly forces to reach the enemy and
one for the engagement. Each phase has corresponding
goals for the action. The action models for the military

tasks in the field manual are represented within AFS using
Tapir, a general purpose, semi-declarative hierarchical
agent control language that can express goals, sensors and
actions using a unified syntax [18]. During each simulation
run, the action models control the military agents;
dynamically reacting to the changing properties of the
simulation in order to achieve their goals.

Figure 2: Action model for Defeat

User interface for COA authoring: We needed an
interface that was as familiar to commanders as possible.
Commanders work with maps and overlays to show the
geography, unit locations, and military tasks. The map is
usually accompanied by a textual description. The
nuSketch system is explicitly designed to support COA
authoring, and met this requirement very well [12], [13].

NuSketch provides a graphical interface where COA
terrain, units, avenues of approach, and tasks can be
described. The user can also specify the commander’s
intent for the overall COA and individual tasks. An
example COA sketch is shown in Figure 3.

Figure 3: nuSketch COA authoring interface

NuSketch elements have a precise declarative semantics

that is reflected in the SHAKEN component library
ontology. Once the COA is specified in nuSketch, it is
translated to a SHAKEN concept map (CMAP). The
translator maps terms in the nuSketch ontology to the

12

corresponding terms in the SHAKEN component library. In
some cases, the knowledge is processed to resolve
ontological mismatches; for instance, the task timing
information in nuSketch is based on the quantitative start
and end times, whereas SHAKEN relies on qualitative
ordering information among tasks; therefore, the translator
processes the quantitative information to derive the
necessary qualitative ordering.

As expected, the experts want the interface to be as easy
and quick to use as their regular pen-and-paper way of
doing things. The primary obstacle to achieving this was to
find a suitable combination of sketching gestures, and a
layout of windows that would enable rapid authoring of the
COA. Currently, it takes 1 to 2 hours to author a COA.
The SMEs would like to be able to do it within 15 minutes.

Critiquing Knowledge
Critiquing relies on both domain-independent and
specialized knowledge. Domain-independent knowledge is
leveraged as domain-specific terms are created, by
specializing domain-independent terms. We will primarily
discuss here the domain-specific critiquing knowledge.

Two kinds of domain-dependent critiquing knowledge
were needed: (1) necessary and sufficient slot values of
concepts, and (2) critiquing rules. We now consider in
more detail how each was entered.

Necessary properties of concepts: The SHAKEN
graphical interface is the primary means used to create the
domain-specific concepts from domain-independent ones.
For example, for each kind of terrain, we encoded its
trafficability for each kind of unit. For each unit, we
encoded the equipment it possesses, and its combat power.
For each military task, we encoded how much relative
combat power is generally thought to be sufficient to
effectively perform this task. The tasks are encoded using
a STRIPS-like language used by many AI planners [4].

As a concrete example, Figure 4 shows the
representation of the concept of Rolling-Hills. This
concept map indicates that rolling hills offer relatively
unrestricted movement for armor and infantry units. See
[8] for a description of how logical axioms are synthesized
from graphs such as this.

Figure 4: Trafficability definition for Rolling Hills

Sufficient properties of concepts: For many concepts, it is
possible to define both necessary and sufficient properties.
For example, if Blue-Military-Unit represents the class of
all friendly units, then any military unit whose allegiance is
Blue is a member of this class. A domain expert specifies
the sufficient properties of a concept by annotating the
graph representing the necessary properties.

The most common application of sufficient properties
was to create subclasses of actions representing a specific
situation, indicating a special case. For example, the
required relative combat power ratio for the most general
case of each military action is built into the system.
However, the actual relative combat power ratio depends
on the specifics of the situation. For instance, a ratio of 3 is
normally desired for a general attack, but when an aviation
unit attacks an armor unit, a combat power ratio of 0.5 is
adequate. When a commander authors a COA, he may use
the general attack action vocabulary. But, if the knowledge
base includes a subclass of the attack action whose
sufficient properties are that the agent is an aviation unit,
and the object is an armor unit, its lower relative combat
power ratio will be used whenever such a situation arises.
Figure 5 shows the concept map for such a class. See [16]
for more details on entering special cases of actions.

Figure 5: A special case of the Attack action. The nodes
grouped in a box indicate sufficient properties.

Critiquing rules: We devised a special kind of rule, called
a pattern, where the antecedent represents a collection of
assertions pertaining to the situation being critiqued, and
the consequent is a critiquing score on some critiquing
dimension. Figure 6 shows an example pattern that rates a
COA as good if some forces are kept in the reserve. The
portion of the graph linked to the root with the has-pattern
relation indicates an antecedent, and the portion linked
using critique-score indicates the consequent of the rule.

Critique scores can be positive or negative, and a single
pattern can apply to more than one critiquing dimension.
Critiquing dimensions for COA patterns include such
concepts as Risk, Casualties, Maneuver Effectiveness,
Command and Control, Terrain Use, Preparedness for
Enemy Response, Simplicity, Resource Use, and
Synchronization. Applying these rules, organized by the
critiquing dimensions, gives a direct rating of a COA.

13

Figure 6: A pattern indicating that allocating a reserve
is good for Blue-Reserve-Availability

Exercising Critiquing Knowledge

SHAKEN currently supports three different kinds of
critiquing: declarative inference, normative simulation, and
empirical simulation. (SHAKEN’s analogical reasoning
capabilities can also be used for critiquing [10], but this is
not covered in the present paper.)

Critiquing by declarative inference: COA critiquing by
declarative inference systematically finds and applies all
applicable COA patterns and assigns them a score. The key
technical challenge in matching patterns against a COA is
that matches may not be syntactically exact. Therefore, we
built a utility that can compute matches modulo a set of
transformations. For example, we may know from the COA
that a Blue force is in a city; we may also have a pattern
saying that if an armor unit is in a city, it is poor for
security of that unit (unless it is accompanied by infantry
that can protect tanks in narrow streets and alleys from
short-range antitank weapons). The pattern matcher will
match the COA and the pattern, noticing that the Blue force
has an armor unit that is in the same location. The pattern
matcher contains a few hundred such transformations.

Figure 7: A report from critiquing by patterns

Figure 7 shows an example report generated by matching
patterns, as presented by the SHAKEN interface. The top
of the report indicates the critiquing scores. The COA
being evaluated has a score of Very Good on the dimension
of deception. The table that follows indicates which nodes
in the pattern matched which nodes in the COA. For
example, B2ndTankBde conducts the main attack, and
B4thTankBde conducts the supporting attack.

Critiquing by normative simulation: Normative
simulation critiques a COA by executing each step. It relies
on the KM situation mechanism, and executes each step
based on its effects (add/delete lists). It analyzes
dependencies between conditions and effects, checking that
the required conditions for each step are met when the step
is supposed to take place, and that the expected effects of
the overall process are, in fact, obtained. It also checks
how different steps are related to each other, including their
temporal ordering and causal relationships. The simulation
reports possible errors and presents them as critiques. For
instance, for each step in the COA, normative simulation
computes the net relative combat power available, and
compares it against the required relative combat power
ratios already encoded in the system.

Figure 8 shows an example normative simulation
report. In this case, one of the preconditions of a military
action has failed: the given combat power ratio is not high
enough to perform the given task. The net relative combat
power of a military unit is computed based on the combat
power of its subunits. The explanation section of the report
shows in detail how the combat power was computed by
combining various pieces of information, including unit
equipment, default combat power, and remaining unit
strength, through multiple COA steps. The user can check
this explanation to see why the condition failed.

Figure 8: COA critiquing by normative simulation

14

The combat power numbers are dynamic, and take into
account how the various units undergo attrition over a
period of time. The action is flagged if the actual relative
combat power during an action is less than the required
relative combat power. Even when the combat power
exceeds what is required, the commander can use the report
information to check that all the decisive points have
overwhelming relative combat power ratios.

In this instance, an SME added a special case of the
Attack-by-Fire action to account for this kind of situation
(i.e., when an aviation battalion attacks an armored unit, a
combat power ratio of 0.5 is enough). Once this special
case was added, the precondition was satisfied.

Critiquing by empirical simulation: Empirical and
normative simulation complement each other in SHAKEN.
Simulation is used to capture complex dynamics in the
COA, and to explicitly model uncertainty. For empirical
simulation, SHAKEN uses the Capture the Flag (CtF) tool
[1], based on the AFS abstract physics-based model of
division-level engagements described earlier (see Figure 2).
Once a nuSketch COA is translated to CtF, Monte Carlo
simulation is performed, running the COA multiple times
until statistically significant results are obtained. The data
from these trials is summarized in HTML reports, showing
combat power ratios and graphical snapshots of critical
events (e.g., engagements) during the simulated runs.

Figure 9 shows the combat power ratio graph produced
for a particular engagement during a single simulation run.
The ratio increases as the Blue side gains dominance over
time, indicating a Blue army victory. A chief strength of
empirical simulation is unexpectedly simple: SMEs can
watch their COAs unfold visually, and can immediately see
flaws and strengths. The results are analyzed to construct a
qualitative representation of the space of outcomes,
explicitly identifying critical points.

Figure 9: Output from empirical CtF simulation

Evaluation

We evaluated the system with the help of two domain
experts, both of whom were retired Army officers. One
had served at the rank of lieutenant general, and the other
as an intelligence officer. The objective of the evaluation

was twofold: to assess how effectively the knowledge
acquisition capabilities of SHAKEN would work for
domain experts with no training in formal knowledge
representation, and to test the performance of the resulting
knowledge base on the COA critiquing task.

The evaluation was conducted over 15 days. During
the first 7 days, we provided hands-on training to the two
subject matter experts, using an example critiquing task.
The SMEs were then given a new task, in the form of a
COA problem statement and its solution, expressed in
textual form, and were asked to address it using the system.
The SMEs were asked to encode the textual description in
SHAKEN. They then authored critiquing knowledge,
independent of the COAs, and used it to critique them.

Before encoding a COA, the SMEs produced a manual
critique for it, to serve as a guideline for evaluating the
ultimate critique to be produced by the system. Authoring
the critiquing knowledge was an iterative task: the
knowledge was successively refined based on the system
critique, and how it differed from the manual critique.

Over the 15-day period, the SMEs authored three
different COAs and 60 pieces of critiquing knowledge.
The critiquing knowledge included patterns and special
cases of actions. Below, we present the textual description
of a few patterns authored by the SMEs during evaluation.
The critiquing dimensions are shown in bold font:

 If a COA secures a piece of terrain narrower than 50
meters, it makes good use of terrain.
 If the supporting attack occurs before the main attack, it
is good for COA effectiveness, mission accomplishment,
and synchronization.
 If an armored unit attacks a mechanized infantry unit
outside a city, it is good for enemy maneuver engagement.

The antecedent encodes the condition under which the

pattern applies, and often includes spatial information such
as terrain or unit location. In some cases, the antecedent
can include negation, for example, the location of a unit not
being in a city. Let us now consider two examples of
special cases of actions, where the bold text represents the
sufficient property of the special case:
 When an aviation unit attacks an artillery unit, it is
sufficient to have a combat power ratio of 0.3.
 While seizing a bridge, it is sufficient to have a combat
power ratio of 0.3.

These example patterns and special cases of actions
show that SMEs with very little training in knowledge
representation were able to author nontrivial pieces of
critiquing knowledge. In particular, the first-order logic
formalization of this knowledge, synthesized automatically
from the graphs by SHAKEN, includes quantified
variables, implications, negation, and, in the case of special
cases of actions, concept definitions (bi-directional
implications). These formal structures are clearly beyond
anything that the SMEs could encode directly. In addition,

15

through the constraints imposed by the graphical interface
(e.g., guiding the SME to select concepts from the existing
ontology, restricting the choices of relations to only
semantically valid ones), the SMEs formalized their
knowledge in conformance with SHAKEN’s underlying
ontology. This ill ustrates the key achievement of this work,
namely, a significant enhancement of the SME’s abilit y to
articulate formal knowledge, in a way consistent with, and
building upon, the preexisting knowledge in the system.

We tested the empirical simulation on the COAs
authored by the SMEs. Monte Carlo summaries of mass
lost and goals achieved over multiple simulations showed
clear differences between these COAs. In addition, the
COAs that we felt were most dangerous had the greatest
amount of variance in their outcome. This highlights one of
empirical simulation’s greatest strengths: the abilit y to go
beyond static analysis and focus instead on the dynamics of
multiple concurrent processes.

Despite these achievements, we encountered several
limitations. The most significant problem is to translate
natural but informal domain concepts (e.g., “suff icient
force”, “ flank” , “contour” , “overwhelm”) into a
computable form (e.g., in terms of coordinates and
distances), a prerequisite for machine reasoning about the
domain. While SHAKEN provides good support for
entering formal knowledge once that conceptual translation
is made, it provides littl e help with the translation in the
first place. This turned out to be the most notable challenge
for the SMEs. It is exacerbated in the COA domain, where
many important concepts are spatial in nature, but
particularly diff icult to pin down precisely in formal terms.

Second, although the interface helps SMEs enter
knowledge in terms of the existing ontology, there is still
potential for SMEs to make mistakes. For example, they
sometimes used negation in a way that differed from their
intent, without realizing that the semantics of what they
encoded was subtly different (e.g., one SME encoded “an
attack not on a city is good” , intending to encode “no attack
on a city is good”). More proactive checking and validation
of SME inputs would help identify and correct such errors.

As additional evaluation data, at the end of the 15-day
period we compared the SHAKEN critiques produced
using an SME’s formally encoded knowledge with the
manual critiques written by the same SME. Our goal was to
check that the SME’s encoded knowledge was to some
extent “ reasonable” compared with his ideal solution (the
manual critique), that is, to check that the SME’s rules
were not simply “ formal nonsense”. The SMEs were asked
to assign a correctness score on a five-point scale (-2 to +2)
to the results produced by SHAKEN using their encoded
knowledge. A score was given to each critiquing dimension
that the SME considered relevant to the particular COA.

Of the 16 relevant critiquing dimensions for one of the
representative COAs, the system critique received a score
of +2 for 8 of the dimensions; for 3, a score of +1; for 4, a
score of –1; and for 1, a score of -2. Although many other
factors influence these scores (e.g., the inherent knowledge

representation and reasoning capacity of SHAKEN itself),
the results indicate that the SME was able to enter at least
some of his knowledge with a reasonable degree of
accuracy and fidelity.

The SMEs’ overall assessment was that a COA analysis
capabilit y such as the one we tested could ultimately be
very useful in solving operational problems: The software
can work through tedious details and double-check all
potential COAs, especially when the commanders are tired,
under pressure, and under time constraints.

Although our goal is to break new ground in knowledge
acquisition technology, rather than to specifically critique
COAs, it is nevertheless interesting to consider what it
would take for the COA-critiquing application of
SHAKEN, using SME-entered knowledge, to reach a
suff iciently mature level for deployment. The technology
requires numerous enhancements before it comes close to
being deployable. For example, a library of a few hundred
patterns and special cases of action will have to be built
before the system starts producing non-obvious critiques
that add value to what a commander can quickly determine
with a visual inspection of a COA. One way to drive such a
knowledge base construction is to work with a sizable
collection of case studies [23] that will provide concrete
test cases, a well -defined scope for knowledge entry, and
clear performance criteria. The detail captured in the
normative simulation can also be improved, giving special
attention to simulating concurrent events.

Related Work
In previous work, we developed an extensive ontology

of plan evaluation and plan critiquing [5]. In another
previous study, we evaluated nuSketch as a COA authoring
tool, and demonstrated that COAs authored using nuSketch
were comparable in quality to ones authored with more
traditional methods [22].

In the present work, the main innovations are: (a) using
the plan critiquing ontology in conjunction with normative
simulation; (b) acquiring critiquing knowledge in the form
of patterns and necessary and suff icient conditions for
actions; and (c) showing that the system can exhibit some
level of COA critiquing competence, through declarative
inference, normative simulation, and empirical simulation.

There has been significant work in building interactive
plan authoring environments [20], but it has not addressed
the specific problem of COA critiquing. The use of patterns
for COA critiquing was demonstrated in [11], which let
experts select subsets of a COA sketch to generate critiques
that could be subsequently applied via analogy or as rules.
However, that system only used information explicitly
represented in the sketch, whereas a broader range of
knowledge can be used in SHAKEN patterns.

Future Work
Work is under way to address many of the limitations
identified in the previous section. For example, we are

16

making extensions to nuSketch to support richer COA
descriptions. Similarly, we are implementing the normative
simulation of concurrent events.

We are also developing a suite of capabilities that will
let SHAKEN users enter, organize, and retrieve knowledge
using English. These capabilities make use of the START
[14] and Omnibase [15] systems. To perform knowledge
entry, the user enters a sentence or phrase, which is parsed
into a concept map representation similar to that used
within SHAKEN. Through an interactive dialog between
the user and the system, this concept map is refined into a
SHAKEN concept map, which is added to SHAKEN' s
knowledge base. Using a similar approach, English
questions are translated into concept map patterns, which
are then used to identify matching concepts within
SHAKEN' s knowledge base.

Summary
We presented the application of a general-purpose
knowledge-based system, SHAKEN, to the specific task of
military Course of Action (COA) analysis. We showed how
SHAKEN can capture and reuse expert knowledge for
COA critiquing, and produce a high-level assessment of a
COA through declarative inference and simulation. The
system has been used and evaluated by domain experts.
The generality of the approach makes it applicable to
knowledge capture for task analysis in other domains.

Acknowledgments
We thank Commander Dennis Quinn and Lt. Gen. Len Wishart
for serving as the domain experts for the evaluation, and Murray
Burke for his encouragement and support for this work. This
research was supported by DARPA’s Rapid Knowledge
Formation project under contract N66001-00-C-8018.

References

1. Atkin, M., G.W. King, D. Westbrook, B. Heeringa, A.
Hannon, and P. Cohen. SPT: Hierarchical Agent Control: A
Framework for Defining Agent Behavior. In Fifth Intl. Conf.
on Autonomous Agents, p. 452-432, 2000.

2. Atkin, M.S., D.L. Westbrook, P.R. Cohen, and G.D. Jorstad.
AFS and HAC: Domain-General Agent Simulation and
Control. In Workshop on Software Tools for Developing
Agents, AAAI-98, p. 89-95, 1998.

3. Barker, K., B. Porter, and P. Clark. A Library of Generic
Components for Composing Knowledge Bases. In
International Conference of Knowledge Capture, 2002.

4. Blythe, J. SHAKEN Action Description Language. Technical
Report, Information Sciences Institute, University of Southern
California, 2002.

5. Blythe, J. and Y. Gil. A Problem-Solving Method for Plan
Evaluation and Critiquing. In Intl. Knowledge Acquisition
Workshop. Banff, 1999.

6. Clark, P., K. Barker, B. Porter, A. Souther, V. Chaudhri, S.
Mishra, J. Thomere, J. Blythe, J. Kim, P. Hayes, K. Forbus,
and S. Nicholson. A Modified Template-Based Approach to

Question-Answering from Knowledge Bases. Technical
Report, SRI International, Menlo Park, CA, 2002.

7. Clark, P. and B. Porter. KM -- The Knowledge Machine User
Manual. Technical Report, U. of Texas at Austin, 1999.

8. Clark, P., J. Thompson, K. Barker, B. Porter, V. Chaudhri, A.
Rodriguez, J. Thomere, S. Mishra, Y. Gil, P. Hayes, and T.
Reicherzer. Knowledge Entry as Graphical Assembly of
Components. In Intl. Conf. on Knowledge Capture, 2001.

9. Forbus, K., R. Ferguson, and D. Gentner. Incremental
Structure Mapping. In Proc. Cognitive Science Society, 1994.

10. Forbus, K., R. Ferguson, and J. Usher. Towards a
Computational Model of Sketching. In Intelligent User
Interfaces Conference. Santa Fe, New Mexico, 2001.

11. Forbus, K., T. Mostek, and R. Ferguson. An Analogy
Ontology for Integrating Analogical Processing and First-
Principles Reasoning. In IAAI-02, 2002.

12. Forbus, K. and J. Usher. Sketching for Knowledge Capture:
A Progress Report. In Intelligent User Interfaces. 2002.

13. Forbus, K., J. Usher, and V. Chapman. Sketching for
Military Courses of Action Diagrams. In Proceedings of
Intelligent User Interfaces Conference. Miami, FL, 2003.

14. Katz, B. Annotating the World-Wide Web using Natural
Language. In 5th RIAO Conference on Computer Assisted
Information Searching on the Internet, 1997.

15. Katz, B., S. Felshin, D. Yuret, A. Abrahim, J. Lin, G.
Marton, A.J. McFarland, and B. Temelkuran. Omnibase:
Uniform Access to Heterogeneous Data for Question
Answering. In 7th International Workshop on Applications of
Natural Language to Information Systems, 2002.

16. Kim, J. and J. Blythe. Supporting Plan Authoring and
Analysis. In Intelligent User Interfaces. Miami, FL, 2003.

17. Kim, J. and Y. Gil. Knowledge Analysis on Process Models.
In 17th Intl. Joint Conf. on Artificial Intelligence (IJCAI-
2001), p. 935-942, 2001.

18. King, G.W., M.S. Atkin, and D. Westbrook. Tapir: The
Evolution of an Agent Control Language. In First Conference
on Autonomous Agents and Multiagent Systems, 2002.

19. Mishra, S., A. Rodriguez, M. Eriksen, V. Chaudhri, J.
Lowrance, K. Murray, and J. Thomere. Lightweight solutions
for user interfaces over the WWW. In International Lisp
Conference. San Francisco, CA, 2002.

20. Myers, K. Strategic Advice for Hierarchical Planners. In
Intl. Conf. on Knowledge Representation and Reasoning, p.
112-123, 1996.

21. Nicholson, S. and K. Forbus. Answering Comparison
Questions in SHAKEN: A Progress Report. In Spring
Symposium on Mining Answers from Text and Knowledge
Bases. Stanford, CA, 2002: AAAI.

22. Rasch, R., A. Kott, and K.D. Forbus. AI on the Battlefield:
An Experimental Exploration. In Innovative Applications of
Artificial Intelligence. Edmonton, Canada, 2002.

23. Schmitt, M.J.F., USMCR, Mastering Tactics: A Tactical
Decision Games Workbook. Marine Corps Gazette. 1994,
Quantico, VA: Marine Corps Association.

17

Proceedings of the 2004 Winter Simulation Conference

R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

THE HATS SIMULATOR

Paul R. Cohen
Clayton T. Morrison

Center for Research on Unexpected Events (CRUE)
USC Information Sciences Institute
4676 Admiralty Way, Suite 1001

Marina del Rey, CA 90292-6601, U.S.A.

ABSTRACT

The Hats Simulator is designed to be a lightweight proxy
for many intelligence analysis problems, and thus a test
environment for analysts’ tools. It is a virtual world in
which many agents engage in individual and collective
activities. Most agents are benign, some intend harm.
Agent activities are planned by a generative planner.
Playing against the simulator, the job of the analyst
is to find harmful agents before they carry out their
plans. The simulator maintains information about all
agents. However, information is hidden from the analyst
and some is expensive. After each game, the analyst is
assessed a set of scores including the cost of acquiring
information about agents, the cost of falsely accusing
benign agents, and the cost of failing to detect harmful
agents. The simulator is implemented and currently
manages the activities of up to one hundred thousand
agents.

1 INTRODUCTION

The Hats Simulator was designed originally to meet the
needs of academic researchers who want to contribute
technology to Homeland Security efforts but lack access
to domain experts and classified problems. Most aca-
demic researchers do not have security clearances and
cannot work on real data, yet they want to develop
tools to help analysts. In any case, real data sets are
expensive: They cost a lot to develop from scratch or
by “sanitizing” classified data. They also are domain-
specific, yet much of the domain expertise is classified.
Because data sets are expensive, many that have been
made available to researchers are relatively small and
the patterns to be detected within them are fixed, few,
and known, so working with these data sets is a bit like
solving a single “Where’s Waldo” puzzle. Sometimes
there also is the problem that real data sets model “sig-
nal” (terrorist activities) not “noise” (everything else)

yet extracting signal from noise is a great challenge.
Data sets in general are static, whereas data become
available to analysts over time. It would be helpful
to have a data feed, something that generates data as
events happen. To validate analysts tools, it would be
helpful to have a generator of terrorist and non-terrorist
activities. The generator should be parameterized for
experimental purposes (e.g., varying the distinctiveness
of terrorist activities, to make them more or less easily
recognizable as such); and it should come up with novel
activities, requiring analysts and their tools to both
recognize known patterns and reason about suspicious
patterns.

Hats is home to thousands of agents (hats) which
travel to meetings. Some hats are covert terrorists and
a very few hats are known terrorists. All hats are
governed by plans generated by a planner. Terrorist
plans end in the destruction of landmarks. The object
of a game against the Hats simulator is to find terrorist
task forces before they carry out their plans. One pays
for information about hats, and also for false arrests and
destroyed landmarks. At the end of a game, one is given
a score, which is the sum of these costs. The goal is to
play Hats rationally, that is, to catch terrorist groups
with the least combined cost of information, false arrests,
and destroyed landmarks. Thus Hats serves as a testbed
not only for analysts’ tools but also for new theories of
rational intelligence analysis. Hats encourages players
to ask only for the information they need, and to not
accuse hats or issue alerts without justification.

The Hats simulator is very lightweight: Agents have
few attributes and engage in few elementary behaviors;
however, the number of agents is enormous, and plans
can involve simultaneously many agents and a great
many instances of behaviors. The emphasis in Hats is
not domain knowledge but managing enormous numbers
of hypotheses based on scant, often inaccurate informa-
tion. By simplifying agents and their elementary behav-
iors, we de-emphasize the domain knowledge required

18

goodelle
Text Box
Appendix B:

Cohen and Morrison

to identify terrorist threats and emphasize covertness,
complex group behaviors over time, and the frighten-
ingly low signal to noise ratio.

The Hats Simulator consists of the core simulator
and an information broker. The information broker is
responsible for handling requests for information about
the state of the simulator and thus forms the interface
between the simulator and the analyst and her tools (see
Figure 1). Some information has a cost, and the quality
of information returned is a function of the “algorithmic
dollars” spent. Analysts may also take actions: they
may raise beacon alerts in an attempt to anticipate a
beacon attack, and they may arrest agents believed to be
planning an attack. Together, information requests and
actions form the basis of scoring analyst performance in
identifying terrorist threats. Scoring is assessed auto-
matically and serves as the basis for analytic comparison
between different analysts and tools. The simulator is
implemented, manages the activities of up to ten thou-
sand agents, and is a resource to a growing community
of researchers.

Figure 1: Information Broker Interface to Hats Simula-
tor

The following sections outline the Hats domain,
including how we generate populations of hats and how
the planner schedules meetings for hats to attend. We
describe the information request framework, the actions
the analyst may take, and scoring. We conclude with a
discussion of the future of the Hats Simulator.

2 THE HATS DOMAIN

The Hats Simulator is a virtual world in which agents
move around, go to meetings, acquire capabilities, do
business, and, for a small subpopulation of agents, do
harm. Agents move on a two-dimensional board which
has only two kinds of locations: Beacons are high-value
places that terrorist agents would like to destroy, other
locations have low value. All beacons have a set of
attributes, or vulnerabilities, corresponding to the ca-
pabilities that agents carry. To destroy a beacon, a
task force of agents must be in possession of a set of
capabilities that match the beacon’s vulnerabilities, as
a key matches a lock. In general, these sets of capabili-
ties are not unique to terrorists, so one cannot identify

a terrorist task force from its constituent capabilities,
alone.

Henceforth, agents are called hats1 and identified as
benign and terrorist; overt and covert are subcategories
of terrorist hats. In general, benign hats outnumber
terrorists by orders of magnitude.

Some agents are known, a priori, to intend harm –
they are “known terrorists” – others are covert. This is
modeled easily by assigning each agent a true and an
advertised hat class:

True Hat Class Adv. Hat Class

Benign Benign Unknown
Known Terrorist Terrorist Terrorist
Covert Terrorist Terrorist Unknown

The Hats Simulator knows the true class of each hat, and
it plans agents’ activities accordingly, but analysts must
infer hat class from how agents behave. While agents
that advertise terrorist hats are “known terrorists,” a
very small fraction of agents that advertise an unknown
class are also terrorists. They are the ones to worry
about.

2.1 Organizations and Population Generation

Hats populations consist of known terrorist hats, covert
terrorist hats andbenignhats. All hats aremembers of at
least one organization; some belong to many. There are
two types of organizations. Terrorist organizations are
made up of only known and covert terrorists. Benign
organizations, however, may contain any kind of hat
– that is, while known and covert terrorists must be
members of at least one terrorist organization, they
may also be members of benign organizations.

Hats populations may be built by hand or gener-
ated by the Hats Simulator. Because the constitution of
a population affects the difficulty of identifying covert
terrorists, population generation is parameterized. The
organization-overlap parameter, a real number be-
tween 0 and 1, determines the percentage of hats in
each organization that are members of other organiza-
tions. For example, if organization-overlap is 0.4,
then 40% of the members of each organization are also
members of other organizations, but the remaining 60%
are only members of their native organization. The
number of organizations an overlapping hat may belong
to is determined by an exponential random number
(thus, overlapping 3 organizations is rare, 4 is very rare,
5 is extremely rare, etc., ...). The population genera-

1The “hats” name is an allusion to the classic spaghetti

western, in which the villain and hero are identifiable by the

color of their hat.

19

Cohen and Morrison

tor manages overlap so that the organization-overlap
percentage is as close as possible to its parametric value.

The total numbers of known terrorist, covert terror-
ist and benign hats in the population are determined by
the num-terrorists, num-coverts and num-benigns

parameters, respectively. Known and covert terrorists
must be members of at least one terrorist organiza-
tion and may also be members of benign organiza-
tions. Benign hats, on the other hand, may only be
members of benign organizations. Not all organiza-
tions have the same number of members. The vari-
able covert-org-members-ratio represents the ratio
of covert terrorist hats assigned to each terrorist organi-
zation and benign-org-members-ratio represents the
ratio of benign hats to each benign organization.

Assignments of hats to organizations (respecting the
parameters for organization-overlap, organization mem-
bers ratios, and the numbers of hat types) takes place
before any actual hats are created. Once assignments
have been determined, the hats themselves are gener-
ated and given their organization assignments. At this
time, each hat is also assigned a native capability, which
the hat will carry throughout the simulation, and a set
of “traded” capabilities which are temporary, expiring
after some number of ticks (e.g., within 40 ticks). Hats
are also assigned random locations in the Hats world
game board.

2.2 Meeting Generation

Hats act individually and collectively, but always plan-
fully. In fact, the actions of hats are planned by a genera-
tive planner. Benign hats congregate for commerce and
pleasure at locations including beacons. Terrorist hats
meet, acquire capabilities, form task forces, and attack
beacons. Several hats might plan to visit a beacon, and
might collectively have the capabilities to destroy the
beacon, yet are benign. Or, one covert terrorist might
plan to visit three known terrorists in succession, ac-
quiring from each a capability that threatens a beacon;
and yet might remain dormant, approaching no beacon,
for a time.

Each organization has a generative meeting planner
associated with it that plans tasks for its members. A
task is a set of meetings planned to deliver a set of
capabilities to some goal location in the Hats World.
Hats that participate in a task are reserved. Hats not
part of a task are free. At each tick each organization
has a chance of beginning a new task according to the
probability specified by the p-start-new-task param-
eter. When a new task is started, the Hats meeting
planner selects a subset of hats from the free hats of
the organization. This subset of hats is called a task-

force. The size of the taskforce is determined by the

num-in-meetingsparameter. The meeting planner also
selects a coordinate in the Hats World game board as the
target location of the task. With probability specified
by the p-beacon-meeting parameter, the planner will
select a beacon location as the task target. Otherwise a
random Hats World coordinate is selected. If a beacon
is the task target, then the set of vulnerabilities of the
beacon determines the set of capabilities the taskforce
must bring to the target. If the target is not a beacon,
then a random set of capabilities is selected – the size
of the set of random capabilities is determined by the
num-requirements parameter. The set of capabilities
the taskforce must bring to the task target is referred
to as the taskforce’s required capabilities. The taskforce
members may or may not already possess the required
capabilities.

In fact, if the taskforce members generally do not
have all these capabilities, then the meeting planner can
construct an elaborate “shell game” in which capabilities
are passed among hats at a long sequence of meetings,
culminating in the fatal meeting at the target. By
moving capabilities among hats, the planner can mask
its intentions. It certainly is not the case that, say, half a
dozen hats with required and known capabilities march
purposefully up to a beacon. Instead, the hats with the
required capabilities pass them on to other hats, and
eventually a capable task force appears at the beacon.

Once the taskforce, target location, and required ca-
pabilities have been chosen, the meeting planner creates
a set of meetings designed to ensure that the taskforce
acquires all of the required capabilities before going to
the target location. The meeting planner accomplishes
this by constructing a meeting tree. Figure 2 shows an
example meeting tree, where the contents of each box
represent the hats participating in a meeting. The tree
is “inverted” in the sense that the root is the last meet-
ing, with branches from the root representing parent
meetings that take place prior to the target meeting
– Figure 2 depicts the temporal ordering of meetings
by directed arrows. At this point, the meeting planner
incrementally fills-out the meeting tree, starting with
the final meeting. The final, root meeting takes place at
the target location and involves all of the taskforce hats.
The parent meetings of the final meeting each have one
taskforce member. The locations of all other meetings
added to the meeting tree are selected randomly.

The meeting planner selects a second set of hats
(from the organization’s free hats) that carry required
capabilities that the taskforce does not currently carry;
these hats are called resource hats. Each of the resource
hats are randomly assigned to taskforce members. Meet-
ings between resource hats and taskforce members are
called resource meetings. Resource meetings are added
to the meeting tree as follows. The planner traverses

20

Cohen and Morrison

Figure 2: Example meeting tree

a branch of the meeting tree which a taskforce mem-
ber originates from (initially, these are just the direct
parents of the final, root meeting). With probability
p-required-resource-meeting-origin, the meeting
planner adds a new meeting as a parent of the cur-
rent meeting, which initially contains only the task-
force member. The planner traverses to that meet-
ing and checks the probability again. With proba-
bility 1−p-required-resource-meeting-origin, the
currentmeeting becomes a resourcemeeting between the
resource hat and the taskforce member. In a resource
meeting, capability trades are planned to transfer the
required capabilities to the taskforce members. This
process is repeated until all of the resource hats have
been assigned to taskforce members.

At this point, the meeting tree has all of the neces-
sary meetings with trades to ensure that the taskforce
will arrive at the task target with all of the required
capabilities. The meeting planner then fills out the
tree with additional meetings, participants, and ca-
pability trades. The additional meetings and trades
are referred to as “decoys” because they are not di-
rectly involved in the task completion. The param-
eter p-produce-decoy-meeting is used to determine
whether a decoy meeting should be added to a leaf
meeting of the current meeting tree.

Once a meeting tree has been completely filled-
out, it is added to a queue of current tasks and it will
start to be executed at the next step of the simulation.
During execution, the current leaves of each meeting tree
are added to the currently-executing-meetings list
and the Hats engine starts moving currently executing
meeting participants toward their meeting locations.
Once all of the meeting participants have arrived at a
meeting location, the meeting lasts for two ticks, after
which all hats not participating in more meetings are set
“free” (and thus available to participate in new planned
tasks). All other hats still reserved for meetings then
begin moving to their next meeting.

The meeting trees created by this meeting planner
typically have a depth ranging from2 to 5. The frequency
of tasks planned depends on both p-start-new-task

and the number of hats in each organization (which
comprise the resources available to the planner).

The Hats Simulator is designed to accommodate
any meeting planner that adheres to a planner API.
We are developing the API and anticipate using other
planners. For example, a variation on the above plan-
ner would plan tasks that relate meetings as directed
acyclic graphs (DAGs) as opposed to trees. This allows
taskforce members to meet with one another repeatedly
before the final meeting. We are also exploring other
meeting topologies in conjunction with researchers in
social network theory.

3 THE INFORMATION BROKER

Think of the Hats Simulator as a society in a box and
your job, as an analyst, is to protect the society against
terrorist taskforces. Specifically, you need to identify
terrorist task forces as such before they damage beacons.
To do so, you require information about the hats in
the box. Information is acquired from an Information

Broker, as shown previously in figure 1. The Information
Broker will respond to questions from you, such as,
Where isHat27 now? and itwill also provide information
by subscription to analysts’ tools (which in turn make
requests for information). For example, a tool might
issue a request like, Identify everyone Hat27 meets in

the next 100 steps, or, Tell me if Hat27 approaches a

beacon with capabilities c1, c7 or c29.
Information comes at a price. Some is free, but in-

formation about states of the simulator that change over
time is costly. The quality of the information obtained is
determined by the amount paid. The following two sec-
tions describe the two central components to the request
framework: the cost of information and noise. Together,
these components make the Hats simulator an exper-
imental environment in which to study the economics
of the value of information in the task of identifying
malevolent behavior in the Hats domain.

3.1 The cost of information

Three kinds of information are available from the In-
formation Broker for free: (1) information about the
population assumed to be available to the user (e.g.,
who the known terrorists are), (2) information about
the Hats simulated world (e.g., the world-map dimen-
sions, the list of beacons and their names, and the list
of all of the capabilities that exist), and (3) some event
bookkeeping (an event history, list of currently arrested
hats, etc.). Information types 1 and 2 are determined

21

Cohen and Morrison

when the simulation is initialized and do not change over
time; type 3 is updated at each step of the simulation.

For Information Broker requests that require pay-
ment, the amount paid (a real number) will determine a
base probability, which in turn determines the accuracy
of the requested information. In the current implemen-
tation, increased accuracy requires exponentially more
“algorithmic dollars.” The payment function, shown in
Equation 1, maps payment to probability.

probability = 1 −

1

log
2
(payment

5
+ 2)

(1)

The same function is applied to every payment-based
request.

3.2 Noise model

The development of a suitable noise model and the
schemes for how noise is applied to requested information
is, itself, an entire field of study. We list here three
approaches, in increasing order of complexity:

1. The analyst may only request a particular piece
of information once and must choose the level
of payment for (and therefore quality of) the
information at the time of request. No addi-
tional requests may be made. The analyst must
decide at the time of request the value of that
piece of information.

2. The analyst may request information multiple
times. However, in order to receive information
beyond previous request(s), the analyst must
pay more than previous requests (according to
the payment scale). Repeated requests at or
below the same level will return precisely the
same information, but paying more returns less
noisy versions of the original request.

3. The analyst may request information multi-
ple times, paying varying amounts. This ap-
proximates the existence of multiple informa-
tion sources (for example, acquiring informa-
tion from multiple witnesses of an event). Such
multiple information sources might be made
explicit, introducing the potential of modeling
sources of trust relationships.

Many other schemes are possible, but these provide some
indication of the wide variety of approaches to modeling
noise.

The current implementation of the information bro-
ker employs the first scheme. The payment the analyst
specifies determines the base probability p of whether,
and to what degree, the information requested will be

noisy: with probability p, the information requested is
returned in its entirety, otherwise the noise model is
applied.

Although the basic noise application scheme is sim-
ple, there still is a variety of types of information each of
which requires a different noise model variant. The table
in Figure 3 summarizes how different types of requested
information are made noisy. Following the noise applica-

Figure 3: Noise model

tion scheme, analysts may only request each piece of in-
formation once. Some information, such as the capabili-
ties currently carried by a hat (ib-hat-capabilities),
is updated at each tick, so the analyst may request that
information once each tick. Other information does not
update, such as information about the members of a
meeting that took place (ib-meeting-participants)
– here the analyst is allowed only one request of this
information. The column labeled “Request Frequency”
shows the frequency with which an analyst may request
information.

The table is split into two groups based on whether
the requested information is a single element (bottom
portion of the table) or a list of elements (top portion
of the table).

3.2.1Lists

Noise is applied to lists in two stages: first, noise affects
the length of the list to be returned, and then noise
is applied to each element of the list. The two main
columns on the right-hand side of the list portion of
the table indicate how noise is applied to list-length
and to each element; in either case, noise is applied
differently depending on whether or not the request is
for information about entities that exist or events that
occurred – true, non-noisy information about entities

22

Cohen and Morrison

that do not exist or events that did not occur is returned
as NIL.

List length is determined by sampling a random
value from a normal distribution with a standard de-
viation of 1.0 and a variable mean.2 The “Mean List
Length” column describes how the mean for the nor-
mal sampling distribution is set. For example, if the
analyst requests the current contents of a Hats world
location (using ib-location-contents), and there are
in fact 3 hats at that location, then the length of the
potential return information (3) determines the mean;
subsequently, the noisy length of the list of hats that
will be returned as a result of the request will be a ran-
dom number selected from a normal distribution with
mean 3, standard deviation 1. If, on the other hand, no
hats exist at that location, then the mean of the normal
distribution is 2 (as specified in Figure 3). These means
have been chosen because they resulted in reasonable
values during experimentation. If the analyst requests
information involving a list and the selected random
value rounds to 0 or lower, then the return value will
be an empty list (or NIL).

Next, assignments are made for each element slot in
the list to be returned. For each element, the noise model
again uses the base probability p to determine whether
the element slot will be noisy. If it is to be noisy, an
element of the requested information type is uniformly
randomly selected (with replacement) from the set of all
elements of that type. For example, a random hat would
be selected from all existing hats. In the case of trades, a
noisy trade consists of two randomly chosen hats and one
randomly chosen capability. With probability 1− p the
element will not be noisy. In this case, the element will
be uniformly selected, without replacement, from the list
of elements that would be returned if the information
was uncorrupted; if the request is for information that
does not exist, then that element of the list will be
empty.

3.2.2Elements

The elements portion of the table describes noise applied
to information consisting of single elements. Random
locations are selected when noise is applied to location
information. A random location is chosen by selecting
two random numbers, one for each coordinate compo-
nent (x, y). The random numbers are selected from
a standard normal distribution (mean 0, standard de-
viation 1.0). The value selected is then multiplied by
the entire range of the x or y axis of the Hats World
game board and divided by 10. This heuristic returns
reasonable distances relative to the size of the game
board dimensions. The adjusted value is then added

2The sampled value is rounded to make it a valid list length.

to the true coordinate component. If the adjusted co-
ordinates exceed the boarders of the game board, the
amount exceeded is “reflected”. For example, if a hat is
at x-coordinate 3 and the adjustment is -5, then rather
than returns an x-value of -2, the value is “reflected” to
x = 2. If, on the other hand, the Game World maximum
x size is 10 and the adjusted value is 12, then the value
is “reflected” to x = 8.

4 ACTIONS

In addition to requesting information, the analyst play-
ing the Hats game can also change a beacon’s alert
level and arrest hats. These actions affect the analyst’s
performance score (described in the next section).

4.1 Beacon Alerts

Each beacon can be set, by the analyst, to be in one of
three alert levels: off (default), low or high, indicating
no threat of an impending attack, a chance of an attack,
and a likely attack, respectively. The Hats Simulator
keeps track of beacon alert levels, including the amount
of time a beacon alert is elevated (low or high) and
whether actual attacks actually occur during elevated
alerts. These statistics include counts of “hits” and
“false positives,” where “hits” ≡ occurances of an attack
while alert is elevated (above off), and “false-positives”
≡ elevated alerts that begin and end with no beacon
attack occurring. These scores are kept for both low

and high alert levels. In general, the goal is to minimize
the time beacon alerts are elevated, and high alerts are
deemed “more costly” than low alerts. On the other
hand, if an attack does occur on a beacon, it is generally
better to have a higher alert level.

4.2 Arresting Hats

Analysts can also issue an arrestwarrant for hats in order
to prevent beacon attacks. A successful arrest results
when the arrested hat is currently a member of terrorist
taskforce. Arrests of any other hats, including hats
that are terrorists but not currently part of a terrorist
taskforce, result in arrest failure and are equivalent to
a false arrest (a false positive). This is an important
aspect of the semantics of “being a terrorist” in the Hats
model: one can be a terrorist but not be guilty of any
crime. Under this interpretation, “being a terrorist” is
a matter of having a propensity to engage in terrorist
acts. A terrorist act in the Hats domain is participating
in an attack on a beacon. Thus, terrorist hats must be
engaged in an ongoing terrorist activity to be successfully
arrested. According to this model, if a hat previously

23

Cohen and Morrison

committed a terrorist act but is not currently part of a
terrorist taskforce, it cannot be successfully arrested.

Successful arrests do not guarantee saving beacons.
As noted, a beacon is only attacked when some subset
of members from a taskforce carry the requisite capa-
bilities that match the target beacon’s vulnerabilities
engage in a final meeting on said beacon. Thus, it is
possible to successfully arrest a terrorist taskforce mem-
ber but the other terrorist taskforce members still have
the requisite capabilities to attack the beacon. If, on
the other hand, the analyst successfully arrests a terror-
ist taskforce member carrying required capabilities that
no other taskforce member carries, then the taskforce
meeting will take place on the beacon, but it will not
be attacked. This is counted as a “beacon save.”

In the present version of Hats, the successful arrest
of a hat does not remove it from the game – the hat
will still behave as if it had not been arrested. It will
still move toward goals and go to meetings. However,
it will not be able to trade any of its capabilities nor
contribute to enabling a beacon attack – it will be as
though the hat were not present.

Currently, the statistics on beacon alert “hits,”
“false positives,” “successful arrests,” and “false arrests”
are not combined into a uniform cost model. They are
simply reported as additional measures of comparative
player performance.

5 SCORING ANALYST PERFORMANCE

The Hats Simulator and Information Broker together
provide an environment for testing analysts tools. Recall
that the object of the game is to identify terrorist task
forces before they damage beacons. Three kinds of costs
are accrued:

• The cost of acquiring and processing informa-
tion about a hat. This is the government in the
bedroom or intrusiveness cost.

• The cost of falsely identifying benign hats as
terrorist

• The cost of harm done by terrorists

The skill of analysts and the value of analysts tools
can be measured in terms of these costs, and these
are assessed automatically by the Hats simulator as the
analyst plays the Hats game. The final report generated
by the Hats Simulator after terminating a simulation
run is divided up into four categories, as described in
the following list:

• Costs: the total amount of “algorithmicdollars”
spent on information from the Information Bro-
ker.

• Beacon Attacks: including the total number of
terrorist attacks that succeeded and the total
number of attacks that were stopped by suc-
cessful arrests.

• Arrests: the number of successful arrests and
the number of false-arrests (false-positives)

• Beacon Alerts: the number of low and high hits
(the number of raised alerts during which an
attack occurred), and the number of low and
high false-positives (the number of raised alerts
during which no attack occurred).

6 DISCUSSION

We are told by intelligence analysts that Hats has many
attributes of “the real thing.” Some say in the same
breath that Hats ought to have other attributes, for in-
stance, telephone communications, rapid transportation
of hats around the board, different kinds of beacons,
and so on. We resist these efforts to make Hats more
“realistic” because for us, the purpose of Hats is to
provide an enormously difficult detection problem with
low domain knowledge overhead. No doubt Hats will
change over time, but we will strive to keep it simple.
Big, complex, covert, but simple. The other goal that
guides our development of Hats is what we might call the
“missing science” of intelligence analysis. To the best of
our knowledge, in the current climate, analysts penalize
misses more than false positives. This sort of utility
function has consequences – raised national alert levels,
lines at airports, and so on. Hats is intended to be a
simulated world in which analysts can experiment with
different utility functions. It is a laboratory in which
scientific models of intelligence gathering, filtering, and
use – models based on utility theory and information –
can be tested and compared.

To meet these goals, our ongoing development of
Hats includes the following: (1) increasing the scale and
efficiency of the simulator to accommodate hundreds of
thousands of hats running in reasonable time to con-
duct experiments and play in real-time; (2) building
WebHats, a web-based interface to Hats, enabling any
researcher with access to the web to make immediate
use of Hats as a data source; (3) providing league ta-
bles of analyst/tool performance scores from playing
the Hats game, promoting public competition to better
intelligence analysis technology; and (4) developing a
user-friendly interface to Hats, including more complex
information querying and visual aids so that human
analysts can play the Hats game more naturally.

24

Cohen and Morrison

7 HISTORY AND ACKNOWLEDGEMENTS

The Hats Simulator was conceived of by Paul Cohen
and Niall Adams at Imperial College in the summer
of 2002. Cohen implemented the first version of Hats,
and David Westbrook, Clayton Morrison, Andrew Han-
non and Michiharu Oshima have subsequently devel-
oped major portions of the simulator. Thanks also are
due to Gary King for help. Bob Schrag at IET con-
tributed useful ideas and built a simulator similar to
Hats for DARPA’s Evidence Extraction and Link Dis-
covery (EELD) program. Work on this project was
funded by EELD.

AUTHOR BIOGRAPHIES

PAUL R. COHEN is the deputy division director of
the Intelligent Systems Division of the University of
Souther California’s Information Sciences Institute. In
2003 he became the Director of the Center for Research
on Unexpected Events (CRUE). Dr. Cohen is currently
on leave from the Department of Computer Science at
the University of Massachusetts, where he has served for
20 years as a Professor and Director of the Experimental
Knowledge Systems Laboratory. His PhD is from Stan-
ford University in Computer Science and Psychology,
in 1983. He served as a Councillor of the American As-
sociation for Artificial Intelligence, 1991–1994, and was
elected in 1993 as a Fellow of the AAAI. His projects
include AIID, an Architecture for the Interpretation of
Intelligence Data; Capture the Flag, a wargaming envi-
ronment; theRobotBabyproject, inwhich a robot learns
representations and their meanings sufficient for natu-
ral language and planning; and the Packrats project,
in which rats are trained to carry video cameras for
search-and-rescue operations. He also works on algo-
rithms for finding patterns in temporal data. Dr. Cohen
is interested in AI methodology, particularly empirical
methods. His e-mail address is <cohen@isi.edu>, and
his web page is http://eksl.cs.umass.edu/∼cohen/

.

CLAYTON T. MORRISON is a Postdoctoral Re-
search Fellow in the Information Sciences Institute at
the University of Southern California. Formerly, Dr.
Morrison was a Senior Research Fellow in the Experi-
mental Knowledge Systems Laboratory of the Computer
Science Department at the University of Massachusetts.
Dr. Morrison holds a Bachelors degree in Cognitive Sci-
ence from Occidental College, and received his Masters
and Ph.D. in Philosophy from Binghamton University.
His research interests include the nature of representa-
tion and knowledge in humans and machines, cognitive
development, and the rapid identification of unexpected

behaviors in large populations. He is currently working
on the development of a Bayesian blackboard system
for the interpretation and analysis of asynchronous and
noisy data from a variety of complex domains. His e-
mail address is <clayton@isi.edu>, and his web page
is http://eksl.cs.umass.edu/∼clayton/

25

mailto:cohen@isi.edu
http://eksl.cs.umass.edu/~cohen/
mailto:clayton@isi.edu
http://eksl.cs.umass.edu/~clayton/

An Unsupervised Algorithm for Segmenting
Categorical Timeseries into Episodes

Paul Cohen1, Brent Heeringa1, and Niall Adams2

1 Department of Computer Science. University of Massachusetts, Amherst. Amherst,
MA 01003

{cohen | heeringa}@cs.umass.edu
2 Department of Mathematics. Imperial College. London, UK

n.adams@ic.ac.uk

Abstract. This paper describes an unsupervised algorithm for segment-
ing categorical time series into episodes. The Voting-Experts algo-
rithm first collects statistics about the frequency and boundary entropy
of ngrams, then passes a window over the series and has two “expert
methods” decide where in the window boundaries should be drawn. The
algorithm successfully segments text into words in four languages. The al-
gorithm also segments time series of robot sensor data into subsequences
that represent episodes in the life of the robot. We claim that Voting-
Experts finds meaningful episodes in categorical time series because it
exploits two statistical characteristics of meaningful episodes.

1 Introduction

Though we live in a continuous world, we have the impression that experience
comprises episodes: writing a paragraph, having lunch, going for a walk, and
so on. Episodes have hierarchical structure; for instance, writing a paragraph
involves thinking of what to say, saying it, editing it; and these are themselves
episodes. Do these examples of episodes have anything in common? Is there a
domain-independent, formal notion of episode sufficient, say, for an agent to
segment continuous experience into meaningful units?

One can distinguish three ways to identify episode boundaries: First, they
may be marked, as spaces mark word boundaries and promoters mark coding
regions in DNA. Second, episodes may be recognized. For instance, we recognize
nine words in the sequence “itwasabrightcolddayinapriland”. Third we might
infer episode boundaries given the statistical structure of a series. For exam-
ple, “juxbtbcsjhiudpmeebzjobqsjmboe” is formally (statistically) identical with
“itwasabrightcolddayinapriland” — one is obtained from the other by replacing
each letter with the adjacent one in the alphabet — however, the latter is easily
segmented by recognition whereas the former requires inference.

This paper proposes two statistical characteristics of episode boundaries and
reports experiments with an unsupervised algorithm called Voting-Experts
based on these characteristics. We offer the conjecture that these characteris-
tics are domain-independent and illustrate the point by segmenting text in four
languages.

26

goodelle
Text Box
Appendix C:

2 The Episode Boundary Problem

Suppose we remove all the spaces and punctuation from a text, can an algorithm
figure out where the word boundaries should go? Here is the result of running
Voting-Experts on the first 500 characters of George Orwell’s 1984. The ?
symbols are induced boundaries:

Itwas ? a ? bright ? cold ? day ? in ? April ? andthe ? clockswere ? st ? ri ?
king ? thi ? rteen ? Winston ? Smith ? his ? chin ? nuzzl ? edinto ? his ? brea
? st ? in ? aneffort ? to ? escape ? the ? vilewind ? slipped ? quickly ? through
? the ? glass ? door ? sof ? Victory ? Mansions ? though ? not ? quickly ?
en ? ought ? oprevent ? aswirl ? ofgrit ? tydust ? from ? ent ? er ? inga ?
long ? with ? himThe ? hall ? ways ? meltof ? boiled ? cabbage ? and ? old ?
ragmatsA ? tone ? endof ? it ? acoloured ? poster ? too ? large ? for ? indoor
? dis ? play ? hadbeen ? tack ? ed ? tothe ? wall ? It ? depicted ? simplya ?
n ? enormous ? face ? more ? than ? ametre ? widethe ? faceof ? aman ? of ?
about ? fortyfive ? witha ? heavy ? black ? moustache ? and ? rugged ? ly ?
handsome ? featur

The segmentation is imperfect: Words are run together (Itwas, aneffort) and
broken apart (st ? ri ? king). Occasionally, words are split between segments
(to in en ? ought ? oprevent). Still, the segmentation is surprisingly good when
one considers that it is based on nothing more than statistical features of sub-
sequences of letters — not words, as no word boundaries are available — in
Orwell’s text.

How can an algorithm identify subsequences that are meaningful in a domain
lacking any knowledge about the domain; and particularly, lacking positive and
negative training instances of meaningful subsequences? Voting-Experts must
somehow detect domain-independent indicators of the boundaries of meaningful
subsequences. In fact, this is a good description of what it does. It implements
a weak theory of domain-independent features of meaningful units. The first of
these features is that entropy remains low inside meaningful units and increases
at their boundaries; the second is that high-frequency subsequences are more
apt to be meaningful than low-frequency ones.

3 Characteristics of Episodes

The features of episodes that we have implemented in the Voting-Experts
algorithm are called boundary entropy and frequency:
Boundary entropy. Every unique subsequence is characterized by the distri-
bution of subsequences that follow it; for example, the subsequence “en” in this
sentence repeats seven times and is followed by tokens c (4 times), t, s and ”, a
distribution of symbols with an entropy value (1.66, as it happens). In general,
every subsequence S has a boundary entropy, which is the entropy of the distri-
bution of subsequences of length m that follow it. If S is an episode, then the
boundary entropies of subsequences of S will have an interesting profile: They

27

will start relatively high, then sometimes drop, then peak at the last element of
S. The reasons for this are first, that the predictability of elements within an
episode increases as the episode extends over time; and second, the elements that
immediately follow an episode are relatively uncertain. Said differently, within
episodes, we know roughly what will happen, but at episode boundaries we be-
come uncertain.
Frequency. Episodes, recall, are meaningful sequences. They are patterns in
a domain that we call out as special, important, valuable, worth committing
to memory, worth naming, etc. One reason to consider a pattern meaningful
is that one can use it for something, like prediction. (Predictiveness is another
characteristic of episodes nicely summarized by entropy.) Rare patterns are less
useful than common ones simply because they arise infrequently, so all human
and animal learning places a premium on frequency. In general, episodes are
common patterns, but not all common patterns are episodes.

4 Related work

Many methods have been developed for segmenting time series. Of these, many
deal with continuous time series, and are not directly applicable to the problem
we are considering here. Some methods for categorical series are based on com-
pression (e.g., [1]), but compression alone finds common, not necessarily mean-
ingful, subsequences. Some methods are trained to find instances of patterns or
templates (e.g., [2, 3]) or use a supervised form of compression (e.g., [4]), but
we wanted an unsupervised method. There is some work on segmentation in the
natural language and information retrieval literature, for instance, techniques
for segmenting Chinese, which has no word boundaries in its orthography, but
again, these methods are often supervised. The method in [5] is similar to ours,
though it requires supervised training on very large corpora. The parsing based
on mutual information statistics approach in [6] is similar to our notion of bound-
ary entropy. [7] provides a developmentally plausible unsupervised algorithm for
word segmentation, but the procedure assumes known utterance boundaries. [8]
give an unsupervised segmentation procedure for Japanese, however it too sup-
poses known sequence boundaries. With minor alterations, their segmentation
technique is applicable to our domain, but we found that Voting-Experts
consistently outperforms it. We know of no related research on characteristics
of meaningful episodes, that is, statistical markers of boundaries of meaning-
carrying subsequences.

5 The Voting Experts Algorithm

Voting-Experts includes experts that attend to boundary entropy and fre-
quency and is easily extensible to include experts that attend to other charac-
teristics of episodes. The algorithm simply moves a window across a time series
and asks for each location in the window whether to “cut” the series at that
location. Each expert casts a vote. Each location takes n steps to traverse a

28

window of size n, and is seen by the experts in n different contexts, and may
accrue up to n votes from each expert. Given the results of voting, it is a simple
matter to cut the series at locations with high vote counts. Here are the steps
of the algorithm:
Build an ngram trie of depth n+1. Nodes at level i+1 of the trie represent
ngrams of length i. The children of a node are the extensions of the ngram
represented by the node. For example, a b c a b d produces the following trie of
depth 3:

*

a
2

b
2

c
1

d
1

a
1

c
1

d
1

b
2

Every ngram of length 2 or less in the sequence a b c a b d is represented by
a node in this tree. The numbers in the lower half of the nodes represent the
frequencies of the subsequences. For example, the subsequence ab occurs twice,
and every occurrence of a is followed by b.

For the first 10,000 characters in Orwell’s text, an ngram trie of depth 8
includes 33774 nodes, of which 9109 are leaf nodes. That is, there are over nine
thousand unique subsequences of length 7 in this sample of text, although the
average frequency of these subsequences is 1.1—most occur exactly once. The
average frequencies of subsequences of length 1 to 7 are 384.4, 23.1, 3.9, 1.8, 1.3,
1.2, and 1.1.
Calculate boundary entropy. The boundary entropy of an ngram is the en-
tropy of the distribution of tokens that can extend the ngram. The entropy of a
distribution for a discrete random variable X is

−
∑
x∈X

p(x) log p(x)

Boundary entropy is easily calculated from the trie. For example, the node
a in the tree above has entropy equal to zero because it has only one child, ab,
whereas the entropy of node b is 1.0 because it has two equiprobable children,
bc and bd. Clearly, only the first n levels of the ngram tree of depth n + 1 can
have node entropy scores.
Standardize frequencies and boundary entropies. In most domains, there
is a systematic relationship between the length and frequency of patterns; in
general, short patterns are more common than long ones (e.g., on average, for
subsets of 10,000 characters from Orwell’s text, 64 of the 100 most frequent
patterns are of length 2; 23 are of length 3, and so on). Our algorithm will
compare the frequencies and boundary entropies of ngrams of different lengths,
but in all cases we will be comparing how unusual these frequencies and entropies

29

are, relative to other ngrams of the same length. To illustrate, consider the words
“a” and “an.” In the first 10000 characters of Orwell’s text, “a” occurs 743 times,
“an” 124 times, but “a” occurs only a little more frequently than other one-letter
ngrams, whereas “an” occurs much more often than other two-letter ngrams. In
this sense, “a” is ordinary, “an” is unusual. Although “a” is much more common
than “an” it is much less unusual relative to other ngrams of the same length.
To capture this notion, we standardize the frequencies and boundary entropies
of the ngrams. To standardize a value in a sample, subtract the sample mean
from the value and divide by the sample standard deviation. This has the effect
of expressing the value as the number of standard deviations it is away from the
sample mean. Standardized, the frequency of “a” is 1.1, whereas the frequency
of “an” is 20.4. In other words, the frequency of “an” is 20.4 standard deviations
above the mean frequency for sequences of the same length. We standardize
boundary entropies in the same way, and for the same reason.

Score potential segment boundaries. In a sequence of length k there are
k − 1 places to draw boundaries between segments, and, thus, there are 2k−1

ways to divide the sequence into segments. Our algorithm is greedy in the sense
that it considers just k − 1, not 2k−1, ways to divide the sequence. It consid-
ers each possible boundary in order, starting at the beginning of the sequence.
The algorithm passes a window of length n over the sequence, halting at each
possible boundary. All of the locations within the window are considered, and
each garners zero or one vote from each expert. Because we have two experts,
for boundary-entropy and frequency, respectively, each possible boundary may
accrue a maximum of 2n votes. This is illustrated below.

frequency

entropy i t w a s a c o l d . . .

i t w a s a c o l d . . .

frequency

entropy i t w a s a c o l d . . .

i t w a s a c o l d . . .

frequency

entropy i t w a s a c o l d . . .

i t w a s a c o l d . . .

i t w a s a c o l d . . .

0 0 3 0 21

A window of length 3 is passed along the sequence itwasacold. Initially,
the window covers itw. The entropy and frequency experts each decide where
they could best insert a boundary within the window (more on this, below). The
entropy expert favors the boundary between t and w, while the frequency expert
favors the boundary between w and whatever comes next. Then the window
moves one location to the right and the process repeats. This time, both experts
decide to place the boundary between t and w. The window moves again and
both experts decide to place the boundary after s, the last token in the window.
Note that each potential boundary location (e.g., between t and w) is seen n
times for a window of size n, but it is considered in a slightly different context
each time the window moves. The first time the experts consider the boundary

30

between w and a, they are looking at the window itw, and the last time, they
are looking at was. In this way, each boundary gets up to 2n votes, or n = 3
votes from each of two experts. The wa boundary gets one vote, the tw boundary,
three votes, and the sa boundary, two votes.

The experts use slightly different methods to evaluate boundaries and assign
votes. Consider the window itw from the viewpoint of the boundary entropy
expert. Each location in the window bounds an ngram to the left of the loca-
tion; the ngrams are i, it, and itw, respectively. Each ngram has a standardized
boundary entropy. The boundary entropy expert votes for the location that pro-
duces the ngram with the highest standardized boundary entropy. As it happens,
for the ngram tree produced from Orwell’s text, the standardized boundary en-
tropies for i, it, and itw are 0.2, 1.39 and 0.02, so the boundary entropy expert
opts to put a boundary after the ngram it.

The frequency expert places a boundary so as to maximize the sum of the
standardized frequencies of the ngrams to the left and the right of the bound-
ary. Consider the window itw again. If the boundary is placed after i, then
(for Orwell’s text) the standardized frequencies of i and tw sum to 1.73; if the
boundary is placed after it, then the standardized frequencies of it and w sum
to 2.9; finally, if it is placed after itw, the algorithm has only the standardized
frequency of itw to work with; it is 4.0. Thus, the frequency expert opts to put
a boundary after itw.
Segment the sequence. Each potential boundary in a sequence accrues votes,
as described above, and now we must evaluate the boundaries in terms of the
votes and decide where to segment the sequence. Our method is a familiar “zero
crossing” rule: If a potential boundary has a locally maximum number of votes,
split the sequence at that boundary. In the example above, this rule causes the
sequence itwasacold to be split after it and was. We confess to one embellish-
ment on the rule: The number of votes for a boundary must exceed an absolute
threshold, as well as be a local maximum. We found that the algorithm splits
too often without this qualification.

Let us review the design of the experts and the segmentation rule, to see
how they test the characteristics of episodes described earlier. The boundary
entropy expert assigns votes to locations where the boundary entropy peaks
locally, implementing the idea that entropy increases at episode boundaries. The
frequency expert tries to find a “maximum likelihood tiling” of the sequence, a
placement of boundaries that makes the ngrams to the left and right of the
boundary as likely as possible. When both experts vote for a boundary, and
especially when they vote repeatedly for the same boundary, it is likely to get a
locally-maximum number of votes, and the algorithm is apt to split the sequence
at that location.

6 Evaluation

In these experiments, induced boundaries stand in six relationships to episodes.

1. The boundaries coincide with the beginning and end of the episode;

31

2. The episode falls entirely within the boundaries and begins or ends at one
boundary.

3. The episode falls entirely within the boundaries but neither the beginning
nor the end of the episode correspond to a boundary.

4. One or more boundaries splits an episode, but the beginning and end of the
episode coincide with boundaries.

5. Like case 4, in that boundaries split an episode, but only one end of the
episode coincides with a boundary.

6. The episode is split by one or more boundaries and neither end of the episode
coincides with a boundary.

These relationships are illustrated graphically in Figure 1, following the con-
vention that horizontal lines denote actual episodes, and vertical lines denote
induced boundaries. The cases can be divided into three groups. In cases 1 and
4, boundaries correspond to both ends of the episode; in cases 2 and 5, they
correspond to one end of the episode; and in cases 3 and 6, they correspond to
neither end. We call these cases exact, dangling, and lost to evoke the idea of
episodes located exactly, dangling from a single boundary, or lost in the region
between boundaries.

We use both hit and false-positive rates to measure the accuracy of our
episode finding algorithms. To better explain the trade-offs between hits and
false-positives we employ the F-measure [9]. This standard comparison metric
finds the harmonic mean between precision and recall is defined as

F-measure =
2× Precision× Recall

Precision + Recall

where Recall is the hit-rate and Precision is the ratio of correct hits to proposed
hits. Note that the difference in proposed and correct hits yields the number of
false positives. Higher F-measures indicate better overall performance.

For control purposes we compare Voting-Experts with two naive algo-
rithms. The first generates a random, sorted sequence of boundaries that is

OR

OR ...

OR ...

OR ...

OR

OR ...

1

2

3

4

5

6

true episode

induced boundary

Fig. 1. A graphical depiction of the relationships between boundaries and episodes.
Horizontal lines denote true episodes; their ends the correct boundaries. Vertical lines
denote induced episode boundaries.

32

equal in size to the actual number of episodes. We call this algorithm Random-
Sample. The second algorithm induces a boundary at every location. We call
this algorithm All-Locations.

In many of these experiments, we compare the results of Voting-Experts
with another unsupervised algorithm, Sequitur, which also finds structure in
categorical time series. Sequitur is a compression-based algorithm that builds
a context-free grammar from a string of discrete tokens [1]. It has successfully
identified structure in both text and music. This structure is denoted by the rules
of the induced grammar. Expanding the rules reveals boundary information. In
our experiments, expanding only the rule associated with the start symbol –
what we refer to as level 1 expansion – most often gives the highest F-measure.

6.1 Word Boundaries

We removed spaces and punctuation from texts in four languages and assessed
how well Voting-Experts could induce word boundaries. We take word bound-
aries as our gold standard for meaning-carrying units in text because they pro-
vide, in most cases, the most unambiguous and uncontentious denotation of
episodes. Clearly word prefixes and suffixes might also carrying meaning, but
most humans would likely segment a discrete stream of text into words.

Algorithm F-measure Hit Rate F.P. Rate Exact % Dangling % Lost %

Voting-Experts .76 .80 .27 .63 .34 .03

Sequitur .58 .58 .43 .30 .56 .14

All-Locations .36 1.0 .78 1.0 0.0 0.0

Random-Sample .21 .22 .79 .05 .34 .61

Table 1. Results of running four different algorithms on George Orwell’s 1984.

English We ran Voting-Experts, Sequitur, and both naive algorithms on
the first 50,000 characters of Orwell’s 1984. The detailed results are given in
Table 1. Voting-Experts performed best when the window length was 7 and
the threshold 4. The algorithm induced 12153 boundaries, for a mean episode
length of 4.11. The mean word length in the text was 4.49. The algorithm induced
boundaries at 80% of the true word boundaries (the hit rate) missing 20% of
the word boundaries. 27% of the induced boundaries did not correspond to word
boundaries (the false positive rate). Exact cases, described above, constitute
62.6% of all cases; that is, 62.6% of the words were bounded at both ends by
induced boundaries. Dangling and lost cases constitute 33.9% and 3.3% of all
cases, respectively. Said differently, only 3.3% of all words in the text got lost
between episode boundaries. These tend to be short words, in fact, 59% of the
lost words have length 3 or shorter and 85% have length 5 or shorter. In contrast,

33

all 89% of the words for which the algorithm found exact boundaries are of length
3 or longer.

Sequitur performed best when expanding only to the level 1 boundaries.
That is, it achieved its highest F-measure by not further expanding any non-
terminals off the sentential production. Expanding to further levels leads to a
substantial increase in the false positive rate and hence the overall decrease in
F-measure. For example, when expanding to level 5, Sequitur identified 78% of
the word boundaries correctly, 20% dangling and only 2% missed. This happens
because it is inducing more boundaries. In fact, at level 5, the false-positive
rate of 68% is near the 78% maximum false positive rate achieved by All-
Locations. The same behavior occurs to a smaller extent in Voting-Experts
when the splitting threshold is decreased. For example, with a window length
of 4 and a threshold of 2, Voting-Experts finds 74% of the word boundaries
exactly but the F-measure decreases because a corresponding increase in the
false-positive rate. In general, Sequitur found likely patterns, but these patterns
did not always correspond to word boundaries.

It is easy to ensure that all word boundaries are found, and no word is lost:
use All-Locations to induce a boundary between each letter. However, this
strategy induces a mean episode length of 1.0, much shorter than the mean word
length. The false-positive count equals the total number of non-boundaries in the
text and the false-positive rate converges to the ratio of non-boundaries to total
locations (.78). In contrast, Voting-Experts finds roughly the same number
of episodes as there are words in the text and loses very few words between
boundaries. This success is evident in the high F-measure (.76) achieved by
Voting-Experts. Not surprisingly, Random-Sample performed poorest on
the text.

The appropriate control conditions for this experiment were run and yielded
the expected results: Voting-Experts performs marginally less well when it is
required to segment text it has not seen. For example, if the first 10,000 charac-
ters of Orwell’s text are used to build the ngram tree, and then the algorithm
is required to segment the next 10,000 characters, there is a very slight decre-
ment in performance. The algorithm performs very poorly given texts of random
words, that is, subsequences of random letters. The effects of the corpus size and
the window length are shown in the following graph. The proportion of “lost”
words (cases 3 and 6, above) is plotted on the vertical axis, and the corpus
length is plotted on the horizontal axis. Each curve in the graph corresponds to
a window length, k. The proportion of lost words becomes roughly constant for
corpora of length 10,000 and higher.

34

Corpus length (in thousands of characters)

10 20 30 40 50

0.3

0.2

0.1

"lost" rate

n=3

n=5
n=6

n=4

Said differently, corpora of this length seem to be required for the algorithm
to estimate boundary entropies and frequencies accurately. As to window length,
recall that a window of length n means each potential boundary is considered
n times by each expert, in n different contexts. Clearly, it helps to increase the
window size, but the benefit diminishes.

Further evidence of Voting-Experts ability to find meaningful word bound-
aries is given in Figures 2 and 3. In Figure 2 we graph the percentage of exact
word matches as a function of word length. For example, Sequitur exactly
matches 30% of words having length 15 while Voting-Experts matches 70%.
The curves converge at word length 17 because only two words in our corpus
have length 17 and both algorithms find only one of them. The curves roughly
mimic each other except in the word length interval from 2 to 4. In this period,
Voting-Experts accelerates over Sequitur because it finds disproportion-
ately more exact matches than Sequitur. This phenomenon is even easier to
see in Figure 3. Here cumulative percentage of exact word matches is plotted as
a function of word lengths and the distribution of word lengths is given behind
the curves. The slope of Voting-Experts is steeper than Sequitur in the in-
terval from 2 to 4 revealing the success it has on the most frequent word lengths.
Furthermore, words with length 2, 3, and 4 comprise over 57% of the Orwell cor-
pus, so at places where accuracy is perhaps most important, Voting-Experts
performs well.

Chinese, German and Roma-ji As a test of the generality of Voting-
Experts, we ran it on corpora of Roma-ji, Chinese and German texts. Roma-ji
is a transliteration of Japanese into roman characters. The Roma-ji corpus was
a set of Anime lyrics comprising 19163 characters. The Chinese text comes from
Guo Jim’s Mandarin Chinese PH corpus. The PH corpus is taken from stories
in newspaper texts and is encoded in in the standard GB-scheme. Franz Kafka’s
The Castle in the original German comprised the final text. For comparison
purposes we selected the first 19163 characters of Kafka’s text and the same
number of characters from 1984 and the PH corpus. As always, we stripped
away spaces and punctuation, and the algorithm induced word boundaries. The
window length was 6. The results are given in Table 2.

35

Sequitur

Voting -Experts

WORD LENGTH

%

O
F

E
X
A
C
T

W
O
R
D

M
A
T
C
H
E
S

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15

Fig. 2. A comparison of exact match-rate on a per-word basis between Sequitur and
Voting-Experts.

0.1

0.2

0.3

0.4

0.5

0.6

5 10 15

Sequitur

Voting-Experts

WORD LENGTH

C
U
M
U
L
A
T
I
V
E

%

O
F

E
X
A
C
T

W
O
R
D

M
A
T
C
H
E
S

2
7
0
1

1
8
6
3

3
2
3

1
8
6
0

1
2
4
5

9
1
7

9
0
3

5
3
5

3
2
9

2
4
4

9
3

6
9

2
7

1
8 7 4 2

Fig. 3. A comparison of cumulative exact match-rate over word length for Sequitur
and Voting-Experts. The background histogram depicts the distribution of word
lengths in the Orwell corpus.

Clearly the algorithm is not biased to do well on English. In particular, it
performs very well on Kafka’s text, losing only 4% of the words and identi-
fying 61% exactly. The algorithm performs less well with the Roma-ji text; it
identifies fewer boundaries accurately (i.e., places 34% of its boundaries within
words) and identifies fewer words exactly. Voting-Experts performed worst on
Chinese corpus. Only 42% of the boundaries were identified although the false
positive rate is an extremely low 7%. The explanation for these results has to
do with the lengths of words in the corpora. We know that the algorithm loses
disproportionately many short words. Words of length 2 make up 39% of the
Chinese corpus, 32% of the Roma-ji corpus, 17% of the Orwell corpus, and 10%
of the Kafka corpus, so it is not surprising that the algorithm performs worst on
the Chinese corpus and best on the Kafka corpus.

36

Voting-Experts F-measure Hit Rate F.P. Rate Exact % Dangling % Lost %

German .75 .79 .31 .61 .25 .04

English .71 .76 .33 .58 .38 .04

Roma-ji .65 .64 .34 .37 .53 .10

Chinese .57 .42 .07 .13 .57 .30

Table 2. Results of running Voting-Experts on Franz Kafka’s The Castle, Orwell’s
1984, a subset of the Chinese PH corpus of newspaper stories, and a set of Roma-ji
Anime lyrics.

If we incorporate the knowledge that Chinese words are rather short in length
by decreasing the splitting threshold, we can increase the F-measure of Voting-
Experts to 77% on the PH corpus. In general, knowledge of the mean episode
length can help improve the boundary detection of Voting-Experts. Like [8],
pretraining on a small amount of segmented text may be sufficient to find suitable
window and threshold values.

6.2 Robot Episodes

We ran Voting-Experts and Sequitur on a multivariate timeseries of robot
controller data comprising 17788 time steps and 65 unique states. Each state was
mapped to a unique identifier, and these tokens were given to the algorithm as
input. The timeseries data was collected with a Pioneer 2 mobile robot, equipped
with sonar and a Sony pan-tilt-zoom camera. The robot wandered around a
room-size playpen for 30 minutes looking for interesting objects. Upon finding
an object, the robot orbited it for a few minutes. The multivariate timeseries
consisted of eight binary variables representing different controllers in our agent
architecture. Each variable is 1 when its corresponding controller is active and
0 when its inactive, so potentially, we have 28 = 256 different states, but as
mentioned earlier, only 65 manifested during the experiment.

– MOVE-FORWARD
– TURN
– COLLISION-AVOIDANCE
– VIEW-INTERESTING-OBJECT
– RELOCATE-INTERSTING-OBJECT
– SEEK-INTERESTING-OBJECT
– CENTER-CHASIS-ON-OBJECT
– CENTER-CAMERA-ON-OBJECT

This timeseries can be broken up into five different observable robot behav-
iors. Each behavior represents a qualitatively different episode in the timeseries.
We denote these episodes as

– FLEEING
– WANDERING

37

– AVOIDING

– ORBITING-OBJECT

– APPROACHING-OBJECT

Table 3 summarizes the results of running Voting-Experts and Sequitur
on the robot controller data. The definition of hit-rate and false-positive rate is
slightly different here. Because the controller data can be noisy at the episode
boundaries, we allow hits a window of length 1 in either temporal direction.
For example, if we induce a boundary at location 10, but the actual boundary
is at location 9, we still count it as a hit. We also enforce a rule that actual
boundaries can only count once toward induced boundaries. For example, if we
induce a boundary at 8 and count it as a hit toward the actual boundary 9, the
induced boundary at 10 can no longer count toward 9.

The mean episode length in the robot controller data is 7.13. This length is
somewhat smaller than expected because the robot often gets caught up in the
corners of its playpen for periods of time and performs a series of wandering,
avoiding, and fleeing behaviors to escape. The total number of true episodes
was 2491. Voting-Experts induced 3038 episodes with a hit rate of 66% and
a false-positive rate of 46% for a combined F-measure of 59%. Like on Orwell,
Voting-Experts consistently outperforms Sequitur on the F-measure. Se-
quitur does best when expanding to the level 1 boundaries. The transition
from level 1 to level 2 produces a sharp increase in the false-positive rate with
a corresponding increase in hit rate, however the F-measure decreases slightly.
At level 5, Sequitur loses only 8% of the episodes but its false-positive rate is
78%, which is near the maximum possible rate of 86%.

Robot Data F-measure Hit Rate F.P. Rate Exact % Dangling Rate Lost Rate

Sequitur

Level 1 .55 .57 .47 .17 .37 .46
Level 2 .51 .77 .62 .34 .37 .29
Level 3 .32 .88 .71 .48 .33 .19
Level 4 .38 .94 .76 .56 .32 .12
Level 5 .36 .97 .78 .63 .29 .08

Voting-Experts

Depth 7, Threshold 4 .59 .66 .46 .20 .39 .41
Depth 9, Threshold 6 .59 .60 .41 .18 .38 .44
Depth 5, Threshold 2 .56 .80 .56 .27 .42 .31

Table 3. Results of running Sequitur and Voting-Experts on 30 minutes of robot
controller data.

38

7 Conclusion

For an agent to generalize its experiences, it must divide them into meaningful
units. The Voting-Experts algorithm uses statistical properties of categorical
time series to segment them into episodes without supervision or prior train-
ing. Although the algorithm does not use explicit knowledge of words or robot
behaviors, it detects episodes in these domains. The algorithm successfully seg-
ments texts into words in four languages. With less success, Voting-Experts
segments robot controller data into activities. In the future we will examine how
other, domain-independent experts can help improve performance. Additionally
we are interested in unifying the frequency and boundary entropy experts to more
accurately capture the balance of strengths and weaknesses of each method. On
a related note, we could employ supervised learning techniques to learn a weigh
parameter for the experts, however we favor the unification approach because it
removes a parameter from the algorithm and keeps the method completely un-
supervised, The idea that meaningful subsequences differ from meaningless ones
in some formal characteristics—that syntactic criteria might help us identify
semantic units—has practical as well as philosophical implications.

8 Acknowledgments

We are grateful to Ms. Sara Nishi for collecting the corpus of Anime lyrics. This
research is supported by DARPA under contract numbers DARPA/USASMDCDASG60-
99-C-0074 and DARPA/AFRLF30602-01-2-0580. The U.S. Government is au-
thorized to reproduce and distribute reprints for governmental purposes notwith-
standing any copyright notation hereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements either expressed or implied, of
DARPA or the U.S. Government.

References

1. Nevill-Manning, C.G., Witten, I.H.: Identifying hierarchical structure in sequences:
A linear-time algorithm. Journal of Artificial Intelligence Research 7 (1997) 67–82

2. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery 1 (1997) 259–289

3. Garofalakis, M.N., Rastogi, R., Shim, K.: SPIRIT: Sequential pattern mining with
regular expression constraints. In: The VLDB Journal. (1999) 223–234

4. Teahan, W.J., Wen, Y., McNab, R.J., Witten, I.H.: A compression-based algorithm
for chinese word segmentation. Computational Linguistics 26 (2000) 375–393

5. Weiss, G.M., Hirsh, H.: Learning to predict rare events in event sequences. In:
Knowledge Discovery and Data Mining. (1998) 359–363

6. Magerman, D., Marcus, M.: Parsing a natural language using mutual information
statistics. In: Proceedings, Eighth National Conference on Artificial Intelligence
(AAAI 90). (1990) 984–989

39

7. Brent, M.R.: An efficient, probabilistically sound algorithm for segmentation and
word discovery. Machine Learning 45 (1999) 71–105

8. Ando, R.K., Lee, L.: Mostly-unsupervised statistical segmentation of japanese: Ap-
plication to kanji. In: Proceedings of North American Association for Computational
Linguistics (NAACL). (2000) 241–248

9. Van Rijsbergen, C.J.: Information Retrieval, 2nd edition. Dept. of Computer Sci-
ence, University of Glasgow (1979)

40

Abstract

The Hats Simulator is a lightweight proxy for
many intelligence analysis problems, and thus a
test environment for analysts' tools. It is a vir-
tual world in which many agents engage in indi-
vidual and collective activities. Most agents are
benign, some intend harm. Agent activities are
planned by a generative planner. Playing against
the simulator, the job of the analyst is to find
harmful agents before they carry out attacks.
The simulator maintains information about all
agents. However, information is hidden from
the analyst and some is expensive. After each
game, the analyst is assessed a set of scores in-
cluding the cost of acquiring information about
agents, the cost of falsely accusing benign
agents, and the cost of failing to detect harmful
agents. The simulator is implemented and cur-
rently manages the activities of up to a hundred
thousand agents.

1. Introduction
The Hats Simulator was designed originally to meet the
needs of academic researchers who want to contribute tech-
nology to Homeland Security efforts but lack access to do-
main experts and classified problems. Most academic re-
searchers do not have security clearances and cannot work
on real data, yet they want to develop tools to help analysts.
In any case, real data sets are expensive: They cost a lot to
develop from scratch or by “sanitizing” classified data. They
also are domain-specific, yet much of the domain expertise
is classified. Because data sets are expensive, many that
have been made available to researchers are relatively small
and the patterns to be detected within them are fixed, few,
and known, so working with these data sets is a bit like
solving a single “Where’s Waldo” puzzle. Sometimes there
also is the problem that real data sets model “signal” (terror-
ist activities) not “noise” (everything else) yet extracting

signal from noise is a great challenge. Data sets in general
are static, whereas data become available to analysts over
time. It would be helpful to have a data feed, something that
generates data as events happen. To validate analysts’ tools,
it would be helpful to have a generator of terrorist and non-
terrorist activities. The generator should be parameterized
for experimental purposes (e.g., varying the distinctiveness
of terrorist activities, to make them more or less easily rec-
ognizable); and it should come up with novel activities, re-
quiring analysts and their tools to both recognize known
patterns and reason about suspicious patterns.

Hats is home to hundreds of thousands of agents (hats)
which travel to meetings. Some hats are covert terrorists and
a very few hats are known terrorists. All hats are governed
by plans generated by a planner. Terrorist plans end in the
destruction of landmarks. The object of a game in the Hats
simulator is to find terrorist task forces before they carry out
their attacks. One pays for information about hats, and also
for false arrests and destroyed landmarks. At the end of a
game, one is given a score, which is the sum of these costs.
The goal is to play Hats rationally, that is, to catch terrorist
groups with the least combined cost of information, false
arrests, and destroyed landmarks. Thus Hats serves as a test
bed not only for analysts’ tools but also for new theories of
rational intelligence analysis. Hats encourages players to ask
only for the information they need, and to not accuse hats or
issue alerts without justification.

The Hats simulator is very lightweight: Agents have few
attributes and engage in few elementary behaviors; how-
ever, the number of agents is enormous, and plans can in-
volve simultaneously many agents and a great many in-
stances of behaviors. The emphasis in Hats is not domain
knowledge but managing enormous numbers of hypotheses
based on scant, often inaccurate information. By simplifying
agents and their elementary behaviors, we de-emphasize the
domain knowledge required to identify terrorist threats and
emphasize covertness, complex group behaviors over time,
and the frighteningly low signal to noise ratio.

Simulating Terrorist Threat in The Hats Simulator

Clayton T. Morrison1, Paul R. Cohen1, Gary W. King2, Joshua Moody1 and Andrew Hannon2

Keywords: Effects Based Nodal Analysis, Multiple Competing Hypotheses, Terrorism, Simulation

USC Information Sciences Institute
4676 Admiralty Way, Suite 1001
Marina del Rey, CA 90292, USA
{clayton,cohen,moody}@isi.edu

University of Massachusetts
140 Governors Drive

Amherst, MA 01003, USA
{gwking,hannon}@isi.edu

1 2

41

goodelle
Text Box
Appendix D:

Figure 1 – Information Broker Interface to the Hats Simulator

The Hats environment consists of the core simulator and
an information broker. The information broker is responsi-
ble for handling requests for information about the state of
the simulator and thus forms the interface between the simu-
lator and the analyst and her tools (see Figure 1). Some in-
formation has a cost, and the quality of information returned
is a function of the “algorithmic dollars” spent. Analysts
may also take actions: they may raise beacon alerts in an
attempt to anticipate an attack on a beacon, and they may
arrest agents believed to be planning an attack. Together,
information requests and actions form the basis of scoring
analyst performance in identifying terrorist threats and pre-
venting terrorist attacks. Scoring is assessed automatically
and serves as the basis for analytic comparison between
different analysts and tools. The simulator is implemented
and manages the activities of up to a hundred thousand
agents.

The following sections outline the Hats domain, including
how we generate populations of hats and how the planner
schedules hat meetings. We describe the information request
framework, the actions the analyst may take, and scoring.
We conclude with a discussion of the future of the Hats
Simulator.

2. The Hats Domain
The Hats Simulator models a “society in a box” consist-
ing of many very simple agents, hereafter referred to as
hats. Hats get its name from the classic spaghetti west-
ern, in which heroes and villains are identifiable by the
colors of their hats. The Hats society also has its heroes
and villains, but the challenge is to identify which color
hat they should be wearing, based on how they behave.
Some hats are known terrorists; others are covert and
must be identified and distinguished from the benign hats
in the society.

Hats is staged in a two-dimensional grid on which hats
move around, go to meetings and trade capabilities. The
grid consists of two kinds of locations: those that have no
value, and high-valued locations called beacons that ter-
rorists would like to attack. All beacons have a set of
attributes, or vulnerabilities, corresponding to the capa-
bilities which hats carry. To destroy a beacon, a task
force of terrorist hats must possess capabilities that
match the beacon’s vulnerabilities, as a key matches a
lock. In general, these capabilities are not unique to ter-
rorists, so one cannot identify terrorist hats only on the
basis of their capabilities.

The Hats society is structured by organizations. All
hats belong to at least two organizations and some hats

belong to many. Terrorist organizations host only known
and covert terrorist hats. Benign organizations, on the
other hand, may contain any kind of hat, including
known and covert terrorists.

2.1 Population Generation
Hats populations may be built by hand or generated by
the Hats Simulator. Because the constitution of a popula-
tion affects the difficulty of identifying covert terrorists,
population generation is parameterized. There are four
sets of population parameters. The first set specifies the
total number of known terrorists, covert terrorists and
benign hats in the population. Another set defines the
number of benign and terrorist organizations. Not all
organizations have the same number of members, so a
third set of parameters assigns the relative numbers of
hats that are members of each organization, represented
as a ratio among organizations. For example, the ratio
2:1:1 means that the first organization has twice as many
members as the other two. Finally, hats may be members
of two or more organizations. An overlap parameter de-
termines the percentage of hats in each organization that
are members of two or more other organizations. Since
hat behaviors are governed by their organization mem-
bership, as we will see in the next section, organization
overlap affects how difficult it is to identify covert terror-
ist hats. To generate populations with hundreds of thou-
sands of hats and thousands of organizations, we use a
randomized algorithm that estimates organization overlap
percentage and membership ratios while matching the
total number of organizations and hats in the population.
When the population is generated, each hat is assigned a
native capability that they will carry throughout the dura-
tion of the simulation, and a set of traded capabilities that
are temporary, expiring after some number of ticks (e.g.,
within 40 ticks). Hats are also assigned random locations
in the Hats grid world.

2.2 Meeting Generation
Hats act individually and collectively, but always planfully.
In fact, the actions of hats are planned by a generative plan-
ner. Benign hats congregate at locations including beacons.
Terrorist hats meet, acquire capabilities, form task forces,
and attack beacons. The purpose of the planner is to con-
struct an elaborate “shell game” in which capabilities are
passed among hats in a potentially long sequence of meet-
ings, culminating in a final meeting at a target. By moving
capabilities among hats, the planner masks its intentions.
Rather than directing half a dozen hats with capabilities
required for an attack to march purposefully up to a beacon,
instead hats with required capabilities pass them on to other
hats, and eventually a capable task force appears at the bea-
con.

Each organization has a generative planner that plans
tasks for its members. Hats that are currently participating
in a task are reserved; hats not currently part of a task are
free. At each tick, each organization has a chance of begin-

42

ning a new task. When a new task is started, the Hats meet-
ing planner creates a task force, a subset of hats selected
from the free hats of the organization. The size of a task-
force is controlled by a parameter. The planner next selects
a target location in the Hats world. With some probability,
that location may be a beacon, otherwise a random location
is selected. If a beacon is selected as the target, the goal of
the task is to bring to that location the set of required capa-
bilities that match the vulnerabilities of the beacon. If the
location is not a beacon, a random set of required capabili-
ties is selected as the set to bring to the location.

Figure 2 – Example of a generated meeting tree. Each box repre-
sents a meeting and contains a list of participating hats. Arrows
indicate the temporal order of meetings.

 Task force members may or may not already possess the
required capabilities; usually they don’t. The planner cre-
ates a set of meetings designed to ensure that the task force
acquires all of the required capabilities before it reaches the
target location. This is accomplished by constructing a
meeting tree that specifies meetings and their temporal or-
der. Figure 2 shows an example meeting tree, where boxes
represent planned meetings among hats and arrows repre-
sent the planned temporal partial order of meetings. The
tree is “inverted” in the sense that the arrows point from
leaves inward toward the root of the tree. Parent meetings,
where arrows originate, are executed first. When all of the
parent meetings of a child meeting have completed, then the
child meeting happens. This ensures that none of the hats
that participate in the child meeting are busy in other meet-
ings. Meeting execution means that the hats participating in
the meeting begin moving toward the meeting location. The
final, root meeting takes place at the task target location and
includes all of the task force hats. The locations of the other
meetings in the tree are selected randomly.
 Initially, the meeting tree is skeletal, containing meetings
whose only participants are the task force members them-
selves. From the organization’s remaining free hats, the
planner selects a second group of resource hats that carry
required capabilities not currently carried by the task force.
Resource hats are randomly assigned to existing meetings,
and trades of required capabilities are scheduled to take
place during the meeting. The planner finishes tree con-
struction by adding decoy meetings, spurious trades and
additional free hats not already involved in moving required
capabilities to the goal. A constraint maintained throughout
tree construction is that at least one hat from a parent meet-

ing will go on to meet in a child meeting. These hats will
either be task force members, resource hats carrying re-
quired capabilities to trade in the next meeting, or will be
decoy hats arriving from decoy meetings.
 Completed meeting trees are added to a queue of pending
tasks. At each tick, the simulator engine searches the task
queue for meetings with no currently executing parent meet-
ings. These meetings are then assigned to a queue of cur-
rently executing meetings and the participant hats are in-
crementally moved toward the meeting location. When all
of the participants have arrived at the meeting location, the
meeting itself lasts for two ticks, after which all hats not
participating in more meetings are set “free” and become
available to participate in new meetings.
 Meeting trees typically have a depth of 2 to 7. The fre-
quency of new tasks depends on both the probability of
starting a new task as well as the number of hats in each
organization.

3. The Information Broker
We are currently developing a human interface to Hats to
enable human analysts to play the Hats game. As an ana-
lyst playing the game, your job is to protect the Hats so-
ciety from terrorist attacks. You need to identify terrorist
task forces before they attack beacons, but you also need
to avoid falsely accusing innocent hats. The only way to
do this successfully is to gather information about hats,
identify meetings, track capability trades and form hy-
potheses about the intentions of groups of hats. The in-
formation broker provides information about the state of
the Hats world. The information broker will respond to
questions such as Where is Hat27 right now? It will also
provide information by subscription to analysts’ tools,
which in turn make information broker requests. For
example, a tool might process requests like, Identify eve-
ryone Hat27 meets in the next 100 ticks, or, Tell me if
Hat27 approaches a beacon with capabilities c1, c7 or c29.
 Some information is free, but information about states
of the simulator that change over time is costly. The
quality of the information obtained is determined by the
amount paid. The following two sections describe the
two central components of the request framework: the
cost of information and noise. Together, these compo-
nents make the Hats simulator an experimental environ-
ment for studying the economics of information value in
the context of intelligence analysis.

3.1 The Cos t o f Information
Some information from the broker is free. This includes
information about the population (who the known terror-
ists are), the simulator world (world-map dimensions),
and some event bookkeeping (locations of attacks, a list
of currently arrested hats). Other types of information
require payment and the amount paid sets a base prob-
ability that is used to determine the accuracy of the in-
formation. Use of this base probability is explained in
the next section. In the current implementation, increas-

43

ing accuracy requires exponentially more “algorithmic
dollars.” The function in Equation 1 maps payment to
probability.

!

probability = 1"
1

log2
payment

5
+ 2

$
%

&

'
(

 (1)

The same function is applied to every payment-based
request. This particular function was chosen because of
its desirable rate of exponential growth, but other func-
tions may be used.

3.2 Making Reques ted Information Noisy
Modeling noise is a topic suitable for an entire research
program. There are many issues to consider, including
whether one can request the same information multiple
times, and if so, how information quality changes;
whether one can get accurate information about events
that occurred in the past; whether one can tell which in-
formation sources are reliable by asking several times the
same question; and so on. We have started simply, im-
posing the constraint that the analyst may request a par-
ticular piece of information only once. This means that
they must select the level of payment for the information
at the time of the request and there is no going back once
the request is made. Information that updates from one
tick to the next, such as the current location of a hat, may
be asked again at the next tick. However, information
that is fixed in time, such as when or where a meeting
took place, can be requested only once. This model al-
lows us to avoid, for now, the thorny issue of how to
“noise up” multiple requests for the same information.

Using the payment function described in the previous
section, a payment amount is mapped to a “base” prob-
ability p. With probability p, the information requested
is returned in its entirety; with probability 1-p it is sub-
ject to noise.

There are eight basic information requests that may be
made: the hats at the location, if any, participants in a
meeting, capabilities carried by a hat, capability trades,
meeting times, hat death time, meeting locations and hat
locations. The first five requests return lists of things,
such as hats, capabilities, times, etc. The latter three re-
turn single elements. How we add noise to responses to
these requests depends on the type of thing requested as
well as whether they involve single elements or lists of
elements.

For locations and times, adding noise is treated as
sampling from a normal distribution, where the mean is
the location or time of the requested item, and the vari-
ance is a function of the size of the Hats world (for loca-
tions) or the amount of time since beginning the simula-
tion (for times). Tests ensure that noisy locations are not
off the Hats world map and that noisy times are not re-
ported as having happened in the future. Adding noise to
reports about a hat or capability requires sampling from
the original set of hat and capability ids defined for the
scenario.

 Information about lists of elements is made noisy in
two stages. First, the list itself is modified by discarding
or adding elements. Then, with probability 1-p, each
element of the resulting list is replaced by an element
sampled uniformly from the relevant domain (e.g., re-
placing a true hat id by one selected at random from
among all hat ids).

Information that is requested about events or entities
that do not exist are also subject to noise. If noise is not
applied, then a query accurately responds that the re-
quested information does not exist. If, however, the an-
swer is to be made noisy, then random information of the
same type requested is returned.

3.3 Exporting Data
The Hats Simulator and Information Broker are designed
to provide an online data feed and allow for interaction
between the analyst and simulation. However, we also
have implemented facilities to export batch data from the
Information Broker. Hats data can be exported as perfect
information (ground truth) or noisy data sets. Applica-
tion of noise works differently because there is no analog
of online requests with payment levels. Noise is applied
to exported data in three ways: exclusion of perfect in-
formation, inclusion of false information and corruption
of perfect information. The level and type of noise is
parameterized. Exported Hats data has been used in sev-
eral projects, including an EAGLE Program mini-TIE
and controlled experiments with social network analysis
tools.

4. Actions
In addition to requesting information, the analyst playing
the Hats game can also change a beacon’s alert level and
arrest hats. Both actions affect an analyst’s performance
score (discussed in Section 5).

4.1 Raising Alerts
We may not be able to stop an attack, but if we know it is
coming, we can prepare and minimize loss. This is the
inspiration behind modeling alerts. Each beacon can be
in one of three alert levels: off (default), low or high.
These correspond to the conditions of no threat, a chance
of an attack, and attack likely. The analyst decides which
the level of each beacon alert, but the Hats Simulator
keeps track of alert states over time and whether an ac-
tual attack occurs while the state is elevated. The simula-
tor keeps statistics including counts of hits (occurrences
of attacks during elevated alerts) and false positives (ele-
vated alerts that begin and end with no beacon attack
occurring). The goal of the analyst is to minimize the
time beacon alerts are elevated. High alerts are more
costly than low ones. On the other hand, if an attack
does occur on a beacon, a high alert is better than a low
alert, and a low alert is better than none.

44

4.2 Arres ting Hats
Analysts can also issue arrest warrants for hats in order
to prevent beacon attacks. Arrests are successful only
when the targeted hat is currently a member of a terrorist
task force. Attempted arrests under any other conditions,
including hats that are terrorists but not currently part of
a terrorist task force, result in a false arrest (a false posi-
tive). Under this model, a hat can be a terrorist but not
be guilty of any crime. Unless terrorist hats are engaged
in ongoing terrorist activities, their arrest incurs penal-
ties. While this is a simple model, it places realistic con-
straints on the analyst’s choice of actions.
 Successful arrests do not guarantee saving beacons. A
beacon is only attacked when some subset of members
from a terrorist task force successfully carry the capabili-
ties matching the target beacon’s vulnerabilities to a final
meeting at on that beacon. It is possible to successfully
arrest a terrorist task force member but the other terrorist
taskforce members still have the capabilities required to
attack the beacon. However, if the analyst successfully
arrests a terrorist task force member carrying required
capabilities that no other task force member has, then the
final meeting of the task force will take place but it will
not be attacked. This is counted as a beacon save.

5. Scoring Analyst Performance
The Hats Simulator and Information Broker together pro-
vide an environment for testing analyst tools. The object
of the game is to identify terrorist task forces before they
attack beacons. Three kinds of costs are accrued:

1 The cost of acquiring and processing information
about a hat. This is the “government in the bed-
room” or intrusiveness cost.

2 The cost of falsely arresting benign hats.
3 The cost of harm done by terrorists.

The skill of analysts and the value of analysis tools can
be measured in terms of these costs, and the Hats envi-
ronment tracks them automatically as analysts play. At
the end of a game, a final report is generated that in-
cludes the following four categories:

1 Costs: the total amount of “algorithmic dollars”
spent on information.

2 Beacon Attacks: including the total number of
attacks that succeeded and the total number of at-
tacks that were stopped by successful arrests

3 Arrests: the number of successful arrests and the
number of false arrests (false positives)

4 Beacon Alerts: the number of low and high alert
hits and false positives.

6. Conclusion
Intelligence analysts tell us that Hats has many attributes of
“the real thing.” Some say in the same breath that Hats
ought to have other attributes, for instance, telephone com-
munications, rapid transportation of hats around the board,
different kinds of beacons, and so on. We resist these efforts

to make Hats more “realistic” because for us, the purpose of
Hats is to provide an enormously difficult detection problem
without the overhead of building rich (and probably classi-
fied) models of real domains. No doubt Hats will change
over time, but we will strive to keep it simple. The other
goal that guides our development of Hats is what we might
call the “missing science” of intelligence analysis. To the
best of our knowledge, in the current climate, analysts pe-
nalize misses more than false positives. This sort of utility
function has consequences – raised national alert levels,
lines at airports, and so on. Hats is intended to be a simu-
lated world in which analysts can experiment with different
utility functions. It is a laboratory in which scientific models
of intelligence gathering, filtering, and use – models based
on utility and information theory – can be tested and com-
pared.

To meet these goals, we will continue development of
Hats along these lines: (1) increasing the scale and effi-
ciency of the simulator to accommodate hundreds of
thousands of hats running in reasonable time to conduct
experiments and play in real-time; (2) building WebHats,
a web-based interface to Hats, enabling any researcher
with access to the web to make immediate use of Hats as
a data source; (3) providing league tables of analyst/tool
performance scores from playing the Hats game, promot-
ing public competition to better intelligence analysis
technology; and (4) developing a user-friendly interface
to Hats, including more complex information querying
and visual aids so that human analysts can play the Hats
game more naturally.

Acknowledgments
Paul Cohen and Niall Admas conceived of the Hats
Simulator at Imperial College in the summer of 2002.
Professor Cohen implemented the first version of Hats.
Bob Schrag at IET contributed useful ideas and built a
simulator similar to Hats for use in the DARPA EELD
and AFRL EAGLE program. Work on this project was
funded by the Air Force Research Laboratory, account
number 53-4540-0588.

Clayton Morrison ! 4/1/05 2:08 PM
Deleted: terrorist

45

	numbers.pdf
	cohen-hats-wsc-2004.pdf
	INTRODUCTION
	THE HATS DOMAIN
	Organizations and Population Generation
	Meeting Generation

	THE INFORMATION BROKER
	The cost of information
	Noise model
	 Lists
	 Elements

	ACTIONS
	Beacon Alerts
	Arresting Hats

	SCORING ANALYST PERFORMANCE
	DISCUSSION
	HISTORY AND ACKNOWLEDGEMENTS

